INNOVATIONS IN TB DATA QUALITY:
An M&E Workshop Facilitators Guide
Contents

Authorship .. 4
Acknowledgments ... 5
Acronym List .. 6
Background on the Need for and Purpose of the Training .. 7
 Goal ... 8
 Specific Objectives .. 8
 Target Group(s) ... 9
 Course Philosophy .. 9
Pre-requisites and Inclusion Criteria for the Training .. 9
Self-Study Preparation for the Course ... 10
Core Texts for this Course .. 11
Useful videos for self-study and reinforcement of key skills ... 12
Methodology.. . 13
Guidelines on the Organization, Logistics, and Preparations for the Training 14
Facilitators .. 14
Overview of the Training Modules ... 15
 Module 1: Avoid Problems ... 15
 Module 2: Find Problems .. 15
 Module 3: New Challenges in TB M&E .. 15
 Module 4: Fix Problems ... 15
 Module 5: M&E as Collaboration ... 16
 Sample Timetable of an Innovations in Data Quality M&E Course... 17
 Sample Ground Rules (adapt as desired) .. 22
Comprehension Exercise... 23
Theme 1: Avoid Problems ... 31
 Session 1: Elements of Data Quality: A Game .. 31
 Session 2: How to produce quality data prospectively ... 55
 Session 3: Introduction to Form Design and Quality-Assured Data Entry 60
 Session 4: Hands-On Skills Practice in Quality-Assured Data Entry .. 64
 Session 5: Country Experiences in Developing an Electronic R&R System 69
 Session 6: How to Develop Electronic Recording & Reporting Systems .. 71
 Session 7: How to Ensure Quality of Qualitative Data ... 79
 Session 8: Data Management of Large Electronic Datasets ... 89
 Session 9: Quality-Assured Joining of TB Data Sets with a Unique ID ... 92
Record Linkage with Unique IDs ... 92
Authorship

These sessions were compiled by the persons listed below. We developed original material where necessary, but often extracted (with permission) from existing training materials to ensure consistency. Special efforts have been made to acknowledge the authors however authorship should extend to include the authors of the original content on which these training materials are based. The many contributors to each session are noted in the slide set.

<table>
<thead>
<tr>
<th>Session</th>
<th>Compiled by</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 1: Elements of Data Quality: A Game</td>
<td>Ellen M. H. Mitchell, Rachel Ochola</td>
</tr>
<tr>
<td>- 2: How to produce quality data prospectively</td>
<td>Rachel Ochola</td>
</tr>
<tr>
<td>- 3: Introduction to Form Design and Quality-Assured Data Entry</td>
<td>Navindra Persaud, Rachel Ochola</td>
</tr>
<tr>
<td>- 4: Hands-On Skills Practice in Quality-Assured Data Entry</td>
<td>Rachel Ochola, Navindra Persaud</td>
</tr>
<tr>
<td>- 5: Country Experiences in Developing an Electronic R&R System</td>
<td>Claire Moodie</td>
</tr>
<tr>
<td>- 6: How to Develop Electronic Recording & Reporting Systems</td>
<td>Claire Moodie</td>
</tr>
<tr>
<td>- 7: How to Ensure Quality of Qualitative Data</td>
<td>Suzanne Cloutier, Navindra Persaud</td>
</tr>
<tr>
<td>- 8: Data Management of Large Electronic Datasets</td>
<td>Rachel Ochola</td>
</tr>
<tr>
<td>- 9: Quality-Assured Joining of TB Data Sets with a Unique ID</td>
<td>Navindra Persaud</td>
</tr>
<tr>
<td>- 10: Theory, Structure, and Process of Data Quality Assessment</td>
<td>Suzanne Cloutier</td>
</tr>
<tr>
<td>- 11: Sampling and Logic Checks of Paper Surveillance Data</td>
<td>Ellen M. H. Mitchell</td>
</tr>
<tr>
<td>- 12: Exploring the Quality of Your Electronic TB Data</td>
<td>Ellen M. H. Mitchell, Suzanne Cloutier</td>
</tr>
<tr>
<td>- 13: Introduction to Routine Data Quality Assessment</td>
<td>Suzanne Cloutier</td>
</tr>
<tr>
<td>- 14: Practice - with Audit Case Study</td>
<td>Suzanne Cloutier</td>
</tr>
<tr>
<td>- 15: Use of WHO Checklist of Standards and Benchmarks for TB Surveillance and Vital Registration Systems</td>
<td>Emily Bloss, Rachel Ochola</td>
</tr>
<tr>
<td>- 16: M&E of TB Mortality</td>
<td>Ellen M. H. Mitchell</td>
</tr>
<tr>
<td>- 17: Revised WHO Case Definitions and Reporting Forms for 2013</td>
<td>Claire Moodie</td>
</tr>
<tr>
<td>- 18: M&E of Contact Investigations & Screening Programs</td>
<td>Ellen M. H. Mitchell, Abbas Zezai, Knut Lönnroth</td>
</tr>
<tr>
<td>- 19: M&E of TB in Health Care Workers and other Occupational Groups</td>
<td>Suzanne Verver, Max Meis, Ellen M. H. Mitchell</td>
</tr>
<tr>
<td>- 20: Screening M&E Skills Practice with Electronic Data</td>
<td>Ellen M. H. Mitchell</td>
</tr>
<tr>
<td>- 21: M&E of Programmatic Management of MDR (PMDT)</td>
<td>Claire Moodie</td>
</tr>
<tr>
<td>- 22: How to Cope with Poor Quality Data</td>
<td>Ellen M. H. Mitchell</td>
</tr>
<tr>
<td>- 23: How to Link Datasets When There are No Unique IDs</td>
<td>Suzanne Cloutier, Rachel Ochola</td>
</tr>
<tr>
<td>- 24: Skills Practice with Link Plus Software</td>
<td>Suzanne Cloutier</td>
</tr>
<tr>
<td>- 25: Data Are Human – The Politics and Practice of TB Data Exchange</td>
<td>Ellen M. H. Mitchell</td>
</tr>
<tr>
<td>- 26: M&E for TB/HIV Data Integration</td>
<td>Ellen M. H. Mitchell</td>
</tr>
<tr>
<td>- 27: Assessing Under-Reporting through Inventory Studies</td>
<td>Ellen M. H. Mitchell, Emily Bloss</td>
</tr>
<tr>
<td>TB M&E Data Quality Glossary</td>
<td>Rachel Ochola</td>
</tr>
</tbody>
</table>
Acknowledgments

This Facilitator's guide benefitted from the contributions of many technical experts in the M&E and data quality fields. Ineke Huitema designed the template for this course and provided valuable input on its design. Nico Kalisvaart and Navindra Persaud reviewed the document for technical content.

Colleen Mazin edited the entire document. Colleagues at WHO and US CDC provided many of the slides and assisted with the interpretation of dense technical content for a wider audience.

The Global Health Bureau, Office of Health, Infectious Disease and Nutrition (HIDN), US Agency for International Development, financially supports this publication through TB CARE I under the terms of Agreement No. AID-OAA-A-10-00020. Suggested citation:

Acronym List

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART</td>
<td>Antiretroviral treatment</td>
</tr>
<tr>
<td>BMU</td>
<td>basic management unit</td>
</tr>
<tr>
<td>CBOS</td>
<td>Community-based organizations</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control</td>
</tr>
<tr>
<td>CI</td>
<td>Contact investigation</td>
</tr>
<tr>
<td>CPT</td>
<td>cotrimoxizole</td>
</tr>
<tr>
<td>DLTLD</td>
<td>Kenyan Division of Leprosy, tuberculosis, and Lung Disease</td>
</tr>
<tr>
<td>DQ</td>
<td>Data quality</td>
</tr>
<tr>
<td>ERR</td>
<td>Electronic Recording & Reporting</td>
</tr>
<tr>
<td>H₀</td>
<td>Null hypothesis</td>
</tr>
<tr>
<td>HCW</td>
<td>Health care workers</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>IPT</td>
<td>Isoniazid preventive therapy</td>
</tr>
<tr>
<td>M&E</td>
<td>Monitoring and evaluation</td>
</tr>
<tr>
<td>NGOs</td>
<td>Nongovernmental organizations</td>
</tr>
<tr>
<td>NTPs</td>
<td>National TB Programs</td>
</tr>
<tr>
<td>NNS</td>
<td>Number needed to screen</td>
</tr>
<tr>
<td>PMDT</td>
<td>Programmatic Management of MDR</td>
</tr>
<tr>
<td>PTB</td>
<td>Pulmonary Tuberculosis</td>
</tr>
<tr>
<td>PRJ</td>
<td>Project file</td>
</tr>
<tr>
<td>QA</td>
<td>Quality assurance</td>
</tr>
<tr>
<td>RDQA</td>
<td>Routine data quality assessment</td>
</tr>
<tr>
<td>R&R</td>
<td>Recording & reporting</td>
</tr>
<tr>
<td>SOPs</td>
<td>Standard operating procedures</td>
</tr>
<tr>
<td>TB</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>TIBU</td>
<td>Kenya’s TB surveillance system</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>XDR-TB</td>
<td>Multidrug resistant TB</td>
</tr>
</tbody>
</table>
Background on the Need for and Purpose of the Training

Monitoring and evaluation (M&E) are critical to measuring and reporting on the success of National TB (Tuberculosis) Programs (NTPs) and the TB CARE I/II projects. While governments and donors are placing greater emphasis on results, at the country level, greater attention is being paid to the use of data for improving patient care and enhancing program management. In order to ensure that adequate capacity exists to meet the increasingly stringent M&E requirements, this course was designed to build the capacity of M&E Officers of NTPs and technical partners.

This course has three over-arching themes. They are to avoid, detect, and fix data quality problems. These three themes seamlessly map onto the three tracks of our TB work, which is to prevent, diagnose, and treat TB. They also permeate the monitoring and evaluation sessions, including those that focus on the measurement of challenges posed by the rollout of:

- The 2013 Revised Case Definitions & Reporting Forms
- The 2011 World Health Organization (WHO) Contact Investigation Guidelines
- The 2013 WHO Screening Guidelines
- The new Stop TB Targets and Indicators Post-2015

The 5 modules include:

1. **The Prevention Module (Avoid Problems)**, which includes sessions on database design, quality-assured TB data entry and management, and standardization, including the development of standard operating procedures (SOPs).
2. **The Detection Module (Find Problems)**, which includes both basic and advanced skills in TB data appending, merging, and linking, using both unique identifiers as well as probabilistic and deterministic algorithms.
3. **The Treatment Module (Fix Problems)**, which covers management of missing, duplicative, and inaccurate TB data.
4. **New Challenges in TB M&E**, which offers some new areas and emerging challenges in measurement of active case finding, prevention, and infection control.
5. **The Humanity Module (M&E as Collaboration)**, which covers the often man-made obstacles to good M&E (e.g., lack of trust) and how to use persuasion and collaboration to resolve them.

Increasingly, the successful avoidance of TB data quality problems requires both technical skills as well as “soft skills,” i.e., the ability to encourage safe and ethical data
exchange by often reluctant stakeholders. This course includes both core computational skills and a negotiation skills component.

The identification of quality problems in TB data has recently advanced significantly with the publication of a suite of five audit tools (see Core Texts below). This course offers learners the chance to contrast the various approaches to routine monitoring versus periodic audit. We cover both more participatory and less collaborative methods of assessing data quality, and the relative merits of both. The curriculum includes methods for scrutinizing data quality at all levels of a health system.

Moreover, M&E officers are introduced to techniques to assess the validity of both quantitative and qualitative data, using state-of-the-art techniques. Learners gain skills in discerning how and when to apply different tools and, more importantly, how to translate findings into an action plan.

Unlike other courses, which emphasize a strictly preventative approach to ensuring data quality \textit{a priori}, this course empowers participants to triage data quality problems and fix them, if possible. The authors openly acknowledge that M&E officers often confront situations in which low quality data are all that is available. The curriculum covers both ideal as well as more pragmatic methods of “fixing” data quality problems on a tight timeline. This course helps learners to distinguish when data can be salvaged and when they cannot.

This training is part of a capacity building effort that consists of virtual and in-person mentoring of country-level staff, short term technical assistance to selected countries, and development of in-person training on TB data management at the country level. Additional complementary training materials can be found at \texttt{www.tbcare1.org}.

Goal
The overall goal is to strengthen the M&E capacity among staff and partners of the national TB program.

Specific Objectives
By the end of the course, participants will be able to:

- Apply best practices to produce quality TB data prospectively.
- Assess the quality of TB data using new tools.
- Differentiate between valid and invalid methods of handling poor quality data.
- Develop and implement appropriate strategies to deal with low quality TB data in the short term (remedial) and the long term (prevention).
Target Group(s)

This training will build upon the foundation established during a three-day, in-person M&E training for NTP M&E staff from 15 countries and TB CARE I and II M&E counterparts held in 2011. The previous training provided a forum to share experiences on common challenges and approaches.

This guide is intended to support M&E planning and practice for a wide audience of stakeholders, including:

- M&E officers from projects and NTP (central level) involved in either routine TB data management or other TB program M&E efforts.
- M&E officers working in TB programs at all levels of the health system.
- Technical partners who design, implement, and evaluate TB activities.
- Global Fund recipients and consultants who provide technical assistance for Global Fund projects and applications.
- Civil society organizations working at all levels to improve TB services. These include community-based organizations (CBOs), faith-based organizations, and other nongovernmental organizations (NGOs) implementing TB activities.

Course Philosophy

The course is guided by three maxims:

1. An ounce of prevention is worth a pound of cure.
2. Learn by doing and through reflection.
3. Strive to improve M&E in areas you can influence, and learn to deal with data from sources that you could not influence.

Pre-requisites and Inclusion Criteria for the Training

This course is designed for individuals who are:

- Working in the field of TB M&E;
- have basic computational skills (arithmetic);
- have a basic knowledge of TB care and control; and
- Have completed prior basic (TB) M&E training.

Computing Requirements

As this course is data-intensive, participants must have the following:

- A functional lap top with Windows or Mac OS.
- A functioning version of CDC (Centers for Disease Control) Link Plus or other linking software.
- A functioning version of Epi-Info 3.5.5, Epi-Info 7, Epidata 3.1, and MS excel 2007.
If participants do not have administrator privileges on their computers, facilitators should encourage them to work with IT administrators before the course to ensure they are able to save executable files and install these software tools.

Link Plus 2.0
Link Plus is a small piece of a bigger family of cancer surveillance software, but we only want to utilize this small part of the program. Link Plus 2.0 requires administrator privileges to install, so it is essential that you work with your systems administrator to install it prior to leaving your workplace.

It can be downloaded for free here: http://www.cdc.gov/cancer/npcr/tools/registryplus/lp_tech_info.htm

1. Download Link Plus, RPLinkPLus_2.0.exe (executable file, 20.7 MB, June 29, 2007) to your computer.
2. Open the downloaded file. The installation program will direct you through the steps for installing Link Plus. If you are a first-time user, we recommend you select the defaults.
3. Once installed, click on the Windows Start button and select Programs, then Registry Plus, then Link Plus.

Epi-Info
Please go to http://wwwn.cdc.gov/epiinfo/ to download your free version of Epi-Info. Please install and configure versions 3 and 7 and open them to make sure they are functional. Note that the two versions can co-exist on your laptop without any problems. During the course, participants will use Epi-Info versions 3 and 7 to undertake different tasks. While the intention was to use only version 7 for the training, this is not possible, as a number of the key functions in version 7 are still not yet operational.

Self-Study Preparation for the Course
The course facilitators assume that learners have completed the following pre-requisites:

1. Completed the MEASURE evaluation online course on human immunodeficiency virus (HIV) data quality (1.5 hrs):
 https://training.measureevaluation.org/related-online-courses/data-quality

2. Viewed two of the following YouTube videos:
 - Getting Started with Epi-Info 7 (5 min)

1 A Portuguese video tutorial on Link Plus is available from Dr. Ana Luiza Bierrenbach albierrenbach@yahoo.com.br
Core Texts for this Course
These core texts are all provided electronically and can also be downloaded before the course.

Understanding and Using Tuberculosis Data. WHO 2014
www.who.int.

Assessing tuberculosis under-reporting through inventory studies. WHO 2012.

Electronic recording and reporting for tuberculosis care and control. WHO 2010: whqlibdoc.who.int/publications/2012/9789241564465_eng.pdf

The Lessons from Loss Tool: www.tbcare1.org/access

Useful videos for self-study and reinforcement of key skills

For teaching in areas without internet access it is recommended that facilitators contact CDC to obtain digital copies of these files. It is helpful for learners to have their own copies to refresh their memories.

1. 8:30 min Epi-Info 7 overview
 http://www.youtube.com/watch?v=tnWiGyIgV4

2. Epi Info 7 Create a project template
 http://www.youtube.com/watch?v=uvPpKW1LnmY

3. 2:36 min how to import Excel files into Epi_Info 7:
 http://www.youtube.com/watch?v=CgRCBord-YA

4. 3:31 Epi Info 7 Skip pattern using an "if, then" statement
 http://www.youtube.com/watch?v=Ww4dAplEnTI

5. 12:03 min Creating legal values
 http://www.youtube.com/watch?v=Lv6_v-pGeRA
6. CDC Epi Info 7 How-to: Moving Files
 http://www.youtube.com/watch?v=VxFVGCdYUlZVo

7. Epi Info 7 Create a form from an Excel spreadsheet 3:30
 http://www.youtube.com/watch?v=dWQLozkWOiE&feature=c4-overview&list=UUGQtxBzqAAQErVOikz2JTpQ

8. 7:37 min Methods and hazards of deduplication in Excel
 http://www.youtube.com/watch?v=6HNX_k2VxU

9. How To Merge / Join Data From Tables In Excel Using vLookup
 http://www.youtube.com/watch?v=3tk_Mif7040

10. How to use Epi-Info Compare Utility v. 3.4.3
 http://www.youtube.com/watch?v=24gBswHdZ8U

11. 8:17 Epi Info 7 Aberration Detection with visit level data
 http://www.youtube.com/watch?v=kmCtyX5OlcU

12. 3:10 Epi Info 7 Aberration detection analysis with aggregated data
 http://www.youtube.com/watch?v=kmCtyX5OlcU

13. Epi Info 7 Packaging data for sharing
 http://www.youtube.com/watch?v=1rKLAPRp71g

14. 3:55 Epi Info 7 2x2 Table Analysis
 http://www.youtube.com/watch?v=8BZZvU4zy_c

15. Epi Info 7 Linear regression analysis
 http://www.youtube.com/watch?v=A7R1rjjHb98

16. Epi Info 7 Create a column chart
 http://www.youtube.com/watch?v=Fr5hR01GV8Q&list=UUGQtxBzqAAQErVOikz2JTpQ

Methodology

The methods of the course reflect a range of individual learning styles and the principles of adult learning. It is a highly interactive training using actual electronic and paper-based data. The methodology includes:
- Debates and triangulation
- Field visits
- Games and friendly competition
- Group exercises using actual data from the countries
- Home work, including problem sets and individual exercises
- Pre- and post-tests on knowledge and application of skills
- Self-study, including a review of various texts
- Sharing of country experiences
- YouTube videos

Guidelines on the Organization, Logistics, and Preparations for the Training

Course organization will depend on resources and group size. We recommend no more than 30 people be enrolled in the course, and a student to facilitator ratio no greater than 4:1. Important points to remember are:

- Leave sufficient time for the students to grapple with the tools. Do not lecture the whole time, as this will not properly convey the material or help build skills in the learners.
- Make sure learners are given sufficient advance notice of the course to allow them to complete all of the pre-requisites and readings.
- A needs assessment before the course can give you a sense of the skill range among the students (see sample in appendix). This will allow you to identify those who should be given co-facilitation and teaching roles.

Facilitators

Facilitators for this course should be a mix of experience and expertise. All facilitators need a strong understanding of the basic principles of tuberculosis and monitoring and evaluation. At least one facilitator should be a data manager or someone who has extensive experience managing datasets. Facilitators who are very senior researchers are unlikely to have the data quality trouble shooting skills that learners may require. At least one facilitator should be very conversant in the use of all of the software. At least one facilitator should be highly competent in training dynamics and pedagogy.
Overview of the Training Modules

Module 1: Avoid Problems
1. A game to explore elements of data quality.
2. How to produce quality data prospectively (i.e., best practices).
3. Introduction to quality assured data entry in Epi-Info.
4. Hands-on skills practice in quality assured data entry in Epi-Info.
5. Short film on Kenya’s TB Surveillance system called TIBU - health care delivery innovation for tuberculosis (Kenya DLTLD) (8 min).
6. How to develop electronic recording & reporting (ERR) systems.
7. How to ensure quality of qualitative data.
8. Back up and security procedures for large electronic datasets with emphasis on good practices.
9. Introduction to quality-assured matching/joining/appending of TB data sets with a unique identifiers (IDs).

Module 2: Find Problems
10. Theory, structure, and process of data quality assessment.
11. No time for a proper audit? How to do quick and simple logic checks of paper-based TB surveillance data.
12. How to explore quality of electronic data – Epi-Info skills practice session and aberration detection.
13. Introduction to routine data quality assessment (RDQA).
14. Practice session with audit case study.
15. Quality of TB surveillance systems and use of WHO checklist of standards and benchmarks for TB surveillance and vital registration systems discussion.

Module 3: New Challenges in TB M&E
17. Revised WHO case definitions & reporting forms for 2013.
18. Monitoring & Evaluation of contact investigations and other screening/active case finding programs.
19. How to measure TB prevalence among health care workers (HCW) as a part of M&E of infection control.
20. How to monitor, evaluate, and report on TB/HIV efforts – Implications of the new case definitions.
21. Introduction to PMDT efforts – Implications of the new case definitions.

Module 4: Fix Problems
23. How to cope with poor quality TB data – Guidance for triage of imprecise, incomplete, inaccurate, and >5% missing data (from inference and imputation) and exercises in working with poor quality data.
24. Screening M&E skills practice with electronic data to calculate the yield of TB screening, the scope of a contact investigation, and to evaluate isoniazid preventive therapy (IPT) uptake among eligible individuals.
25. M&E Skills practice calculating PMDT treatment outcomes and core indicators.

Module 5: M&E as Collaboration
26. Data are human: The politics and practice of TB data exchange for safe and ethical sharing of data and role playing.
27. How to link datasets when there are no unique IDs, and an introduction to CDC’s Link Plus Software.
28. Overview of methods of detecting under-reporting (i.e., low level of completeness): The data verification simulation game.
Sample Timetable of an Innovations in Data Quality M&E Course

Below is a sample agenda for a six day course. This content could best be taught over 8 days, but that length is rarely feasible.

Agenda for Innovations in Data Quality:
An M&E Workshop

Day 1 Theme: **AVOID PROBLEMS**

<table>
<thead>
<tr>
<th>Time</th>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30 – 9:00</td>
<td></td>
<td>Registration of participants</td>
</tr>
<tr>
<td>9:00 – 9:30</td>
<td></td>
<td>Opening Session - Inspiration</td>
</tr>
<tr>
<td>9:30 – 10:00</td>
<td></td>
<td>Introductions and icebreaker</td>
</tr>
<tr>
<td>10:00-10:30</td>
<td></td>
<td>Course orientation, ground rules, self-study</td>
</tr>
<tr>
<td>10:30 – 10:45</td>
<td></td>
<td>Break</td>
</tr>
<tr>
<td>11:00 – 11:30</td>
<td>1</td>
<td>A game to explore the 16 elements of data quality</td>
</tr>
<tr>
<td>11:30 – 12:30</td>
<td>2</td>
<td>How to produce quality data prospectively (i.e., best practices) and SOPs data dictionaries</td>
</tr>
<tr>
<td>12:30 – 13:30</td>
<td></td>
<td>Lunch</td>
</tr>
<tr>
<td>13:30 – 14:30</td>
<td>3</td>
<td>Introduction to quality assured data entry in Epi-Info 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• create a form - walk them through it</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• skip patterns - video in class</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• legal values - homework</td>
</tr>
<tr>
<td>14:30 – 15:30</td>
<td>4</td>
<td>Hands-on skills practice in quality assured data entry in Epi-Info 7</td>
</tr>
<tr>
<td>15:30 – 15:45</td>
<td></td>
<td>Break</td>
</tr>
<tr>
<td>15:45 – 15:55</td>
<td>5</td>
<td>Short film on TIBU - Health Care Delivery Innovation for Tuberculosis (DLTLD) (8 min)</td>
</tr>
<tr>
<td>16:00-16:45</td>
<td>6</td>
<td>How to develop electronic recording & reporting (ERR) systems</td>
</tr>
<tr>
<td>16:45 – 17:00</td>
<td></td>
<td>Wrap-up</td>
</tr>
</tbody>
</table>
Day 2 Theme: PLAN AHEAD

<table>
<thead>
<tr>
<th>Time</th>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 – 9:30</td>
<td></td>
<td>Homework highlights</td>
</tr>
<tr>
<td>9:30 – 10:30</td>
<td>7</td>
<td>How to ensure quality of qualitative data?</td>
</tr>
<tr>
<td>10:30 – 10:45</td>
<td></td>
<td>Break</td>
</tr>
<tr>
<td>10:45 – 12:30</td>
<td>8</td>
<td>Back up and security procedures for large electronic datasets, with emphasis on good practices</td>
</tr>
<tr>
<td>12:30 – 13:30</td>
<td></td>
<td>Lunch</td>
</tr>
<tr>
<td>13:30 – 15:30</td>
<td>9</td>
<td>Introduction to quality-assured matching/joining/appending of TB data sets with a unique ID</td>
</tr>
<tr>
<td>15:30 – 15:45</td>
<td></td>
<td>Break</td>
</tr>
<tr>
<td>15:45-16:45</td>
<td>9</td>
<td>Practice session joining data bases</td>
</tr>
<tr>
<td>16:45 – 17:00</td>
<td></td>
<td>Wrap-up</td>
</tr>
</tbody>
</table>

Day 3 Theme: FIND PROBLEMS

<table>
<thead>
<tr>
<th>Time</th>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 – 9:30</td>
<td></td>
<td>Homework highlights</td>
</tr>
<tr>
<td>9:30 – 10:30</td>
<td>10</td>
<td>Theory, structure and process of data quality assessment</td>
</tr>
<tr>
<td>10:30-10:45</td>
<td></td>
<td>Break</td>
</tr>
<tr>
<td>10:45 – 12:30</td>
<td>11</td>
<td>Sampling and Logic checks of Paper Surveillance Data</td>
</tr>
<tr>
<td>12:30 – 13:30</td>
<td></td>
<td>Lunch</td>
</tr>
<tr>
<td>13:30 – 14:15</td>
<td>13</td>
<td>How to conduct routine data quality audits</td>
</tr>
<tr>
<td>14:15 – 15:15</td>
<td>15</td>
<td>Use of WHO Checklist of Standards and Benchmarks for TB Surveillance</td>
</tr>
<tr>
<td>15:15 – 15:30</td>
<td></td>
<td>Break</td>
</tr>
<tr>
<td>15:30 – 17:00</td>
<td>14</td>
<td>Practice session with audit case study</td>
</tr>
<tr>
<td>17:00 – 17:15</td>
<td></td>
<td>Wrap-up with feedback and explanation of homework</td>
</tr>
</tbody>
</table>
Day 4 Theme: NEW CHALLENGES IN M&E FOR TB

<table>
<thead>
<tr>
<th>Time</th>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 – 9:30</td>
<td></td>
<td>Homework highlights</td>
</tr>
<tr>
<td>9:30 – 10:15</td>
<td>17</td>
<td>Revised WHO case definitions and reporting forms for 2013</td>
</tr>
<tr>
<td>10:15-10:30</td>
<td></td>
<td>Break</td>
</tr>
<tr>
<td>10:30 – 11:45</td>
<td>17</td>
<td>Review of new TB Registers and reporting forms</td>
</tr>
<tr>
<td>11:45-12:30</td>
<td>18</td>
<td>M&E of contact investigations and other screening/active case finding programs</td>
</tr>
<tr>
<td>12:30 – 13:30</td>
<td></td>
<td>Lunch</td>
</tr>
<tr>
<td>13:30 – 14:30</td>
<td>19</td>
<td>How to measure TB prevalence among HCW as a part of M&E of infection control</td>
</tr>
<tr>
<td>15:00 – 15:15</td>
<td></td>
<td>Break</td>
</tr>
<tr>
<td>15:15 – 16:45</td>
<td>20</td>
<td>Screening M&E skills practice with electronic data, to calculate the yield and scope of a CI and to calculate the percentage of IPT uptake among eligible persons.</td>
</tr>
<tr>
<td>16:45 – 17:00</td>
<td></td>
<td>Wrap-up</td>
</tr>
<tr>
<td>TBD</td>
<td></td>
<td>Group dinner/social event</td>
</tr>
</tbody>
</table>
Day 5 Theme: **FIX PROBLEMS**

<table>
<thead>
<tr>
<th>Time</th>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 – 9:15</td>
<td></td>
<td>Highlights from homework, warm-up</td>
</tr>
<tr>
<td>9:15-10:30</td>
<td>21b</td>
<td>Interpreting paper data based upon Revised WHO case definitions and reporting forms for 2013</td>
</tr>
<tr>
<td>10:30-10:45</td>
<td></td>
<td>Break</td>
</tr>
<tr>
<td>10:45 – 12:00</td>
<td>12</td>
<td>Exploring the quality of your electronic data</td>
</tr>
<tr>
<td>12:00-12:30</td>
<td>22</td>
<td>How to cope with poor quality TB data - Guidance for triage</td>
</tr>
<tr>
<td>12:30 – 13:30</td>
<td></td>
<td>Lunch</td>
</tr>
<tr>
<td>13:30-14:00</td>
<td>22</td>
<td>Exercises in working with poor quality and missing data- Imputation</td>
</tr>
<tr>
<td>14:00 – 15:00</td>
<td>21</td>
<td>Introduction to Programmatic Management of MDR (PMDT) efforts and implications of the new case definitions</td>
</tr>
<tr>
<td>15:00 – 15:30</td>
<td>21</td>
<td>Review of the new PMDT Registers</td>
</tr>
<tr>
<td>15:30 – 15:45</td>
<td></td>
<td>Break</td>
</tr>
<tr>
<td>15:30 – 16:45</td>
<td>21</td>
<td>M&E skills practice calculating PMDT treatment outcomes and core indicators</td>
</tr>
<tr>
<td>16:45 – 17:15</td>
<td></td>
<td>Wrap-up</td>
</tr>
</tbody>
</table>
Day 6 Theme: TB M&E AS COLLABORATION

<table>
<thead>
<tr>
<th>Time</th>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.00 – 9:30</td>
<td></td>
<td>Highlights from homework, warm-up</td>
</tr>
<tr>
<td>9:30-10:30</td>
<td>25</td>
<td>Data are human – the politics and practice of data exchange, covering the safe and ethical sharing of data with role plays</td>
</tr>
<tr>
<td>10:30-10:45</td>
<td></td>
<td>Break</td>
</tr>
<tr>
<td>10:45 – 12:30</td>
<td>23</td>
<td>How to link datasets when there are no unique IDs, and an introduction to Link Plus Software</td>
</tr>
<tr>
<td>12:30 – 13:30</td>
<td></td>
<td>Lunch</td>
</tr>
<tr>
<td>13:30-15:00</td>
<td>24</td>
<td>Skills Practice with Link Plus software</td>
</tr>
<tr>
<td>15:00 – 15:15</td>
<td></td>
<td>Break</td>
</tr>
<tr>
<td>15:15 – 16:45</td>
<td>26</td>
<td>How to monitor, evaluate, and report on TB/HIV efforts, and implications of the new case definitions</td>
</tr>
<tr>
<td>16:45 – 17:00</td>
<td></td>
<td>Wrap Up</td>
</tr>
</tbody>
</table>
Day 7 Theme: TB M&E AS INNOVATION

<table>
<thead>
<tr>
<th>Time</th>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.00 – 9:30</td>
<td></td>
<td>Highlights from homework, warm-up</td>
</tr>
<tr>
<td>9:30-10:30</td>
<td>16</td>
<td>M&E of TB Mortality</td>
</tr>
<tr>
<td>10:30-10:45</td>
<td></td>
<td>Break</td>
</tr>
<tr>
<td>10:45 – 12:30</td>
<td>1</td>
<td>Part II Data Quality Game- TB Examples</td>
</tr>
<tr>
<td>12:30 – 13:30</td>
<td></td>
<td>Lunch</td>
</tr>
<tr>
<td>13:30-14:30</td>
<td>27</td>
<td>Overview of methods of detecting under-reporting (low level of completeness)</td>
</tr>
<tr>
<td>14:30 – 15:00</td>
<td>27</td>
<td>Data verification simulation game</td>
</tr>
<tr>
<td>15:00 – 15:15</td>
<td></td>
<td>Break</td>
</tr>
<tr>
<td>15:15 – 16:15</td>
<td></td>
<td>Course exam (Post test)</td>
</tr>
<tr>
<td>16:15 – 16:45</td>
<td></td>
<td>Course evaluation</td>
</tr>
<tr>
<td>16:45 – 17:00</td>
<td></td>
<td>Course closure/group photo</td>
</tr>
</tbody>
</table>

Sample Ground Rules (adapt as desired)

1. Hold yourself accountable for achieving the outcomes of this training.
2. Take risks, such as telling the truth or questioning conventional thinking.
3. Make maximum use of our multi-disciplinarity by asking each other questions. We all know many things.
4. Try to practice creative abrasion (Hirschberg et al). In other words, challenge each other and debate the options.
5. Distinguish between processes that require us to be creative vs. processes for which we need to be systematic.
6. Resist the urge to take the easy way out or to do something superficial.
7. Define the jargon and acronyms you use so that others can understand you.
8. Be as flexible as your mind will allow. Think outside the box. Be open to new ideas and methods.
9. Try to reframe the problems we will encounter as challenges.
10. If what we are doing seems boring or unnecessary, gently suggest a new direction.
Comprehension Exercise

This can serve as a pre-test and a post-test if facilitators desire to measure short-term knowledge gain. Of course we are more concerned with competency, but these tests can be useful to highlight who may need additional support in the field.

Name: ____________________________________ Title: _______________ Country:___________

Innovations in Data Quality: an M&E workshop
Learning Summary Exercise

The purpose of this exercise is to assess the effectiveness of our teaching
Complete the answers for the sessions you attended

Data quality

1. **Accurate data** have (Choose one)
 a. Minimal errors
 b. Minimal bias
 c. Validity
 d. All of the above

2. True or False: Data are **reliable** when they are measured and collected **consistently over time**. (Choose one)
 a. True
 b. False

3. **Completeness** means that an information system (Choose one)
 a. Captures **all** of the eligible persons, services, sites, or other units that it is supposed to measure.
 b. Is unaffected by timeliness of data.
 c. Is free of bias.

4. The information system lacks _______ if it is not designed to record the exact age of individuals diagnosed with TB. (Choose one)
 a. Robustness
 b. Precision
 c. Replicability
 d. Fairness

5. Data have _______ when the information system is **protected from deliberate bias or manipulation** for political or personal reasons. (Choose one)
 a. Equality
 b. Sustainability
 c. Integrity
d. Elasticity

6. **Confidentiality** means that (Choose one)

 a. Clients are assured that their data will be maintained in a way that does not cause them social or physical harm.
 b. Privacy and security measures are in place.
 c. No deductive disclosure occurs.
 d. all of the above

7. When some reports are received late, that information is not available for the aggregate report, which affects the **accuracy, reliability, completeness, and timeliness** of the data. The possible causes of the late data reports are: (Choose one)

 a. M&E staff at all reporting sites have not been informed in writing the date reporting is required.
 b. M&E staff turnover has resulted in new staff members without written documentation of reporting requirements.
 c. M&E staff has not demanded accurate, reliable, complete, and timely data reports.
 d. All of the above

8. Parallel data collection systems can also lead to _______of the services provided. (Choose one)

 e. Miscounting
 f. Under-counting
 g. Double counting

9. If a dataset records the same patient more than once, what must be done?

 a. Verification
 b. De-duplication
 c. Regionalization

10. True or False: Reliability and Validity mean the same thing.

 d. True
 e. False

11. If a program decides to redefine an indicator it is collecting from month to month, which dimension of data quality is most directly affected? (Choose one)

 f. Accuracy
 g. Reliability
 h. Precision
 i. Completeness
 j. Integrity

12. Which of the following is a strategy to maintain the reliability of the data? (Choose one)

 a. Develop standardized, written instructions for data collection.
 b. Keep records in a locked cabinet.
c. Protect electronic files with a password.

d. All of the above

13. What is meant by the term accuracy? (Choose one)

a. The level of detail at which data is stored.
b. The lack of bias in the data.
c. The extent to which a value approaches its true value.
d. The overall quality of the data.

14. What is meant by the term data quality? (Choose one)

e. The lineage of the data.
f. The resolution of the data.
g. The generalization present in the source data.
h. The inherent quality of the data as characterized by its accuracy, precision, bias, level of error, etc.

TB-HIV Session

15. Name three types of double counting:

a.
b.
c.

16. What is benchmarking? (Choose one)

a. A means of identifying outliers through ecological comparison.
b. A method for triangulation of qualitative data.
c. A method of verifying accuracy.

Coping with Bad Data Session

17. Missing data on sexual behavior due to participant non-response is very unlikely to be which type of missing data: (Choose one)

a. Missing completely at random
b. Missing at random
c. Missing not at random

18. To determine what to do about missing data, the following information is needed: (Choose one)

a) When is the report due?
b) Who will be reading the report?
c) How much data are missing?
d) Is the data paper or electronic?

Screening Sessions

19. Why do we consider HCW a priority population for TB screening? (Choose one)
20. If there are 40,000 health workers in Maravilha, and 10,000 are screened each year, and 200 cases of TB are found, what is the number needed to screen to find 1 case of active TB among the health care workers? (Choose one)

a. 100
b. 50
c. 200
d. 1000

21. What is the key impact indicator for M&E of contact investigation? (Choose one)

a. Percentage of eligible child contacts under 5 year placed on IPT.
b. Percentage of people with HIV put on IPT.
c. Percentage of smear positive TB patients who report names of contacts.
d. Percentage of TB patients who complete treatment.
e. Percentage of screened contacts that are diagnosed with TB.
f. All of the above

22. What are the main differences between a screening test and a diagnostic test? (Choose one)

a. A screening test is for ruling-out disease, but a diagnostic test is for ruling it in.
b. A screening test should always be low tech, and a diagnostic test is high tech.
c. A screening test needs to be inexpensive, but a diagnostic test can be expensive.
d. A screening test should be sensitive, and a diagnostic test should be both sensitive and highly specific.

Routine Data Quality Assessment Session

23. In general, how long should you allow per site for an RDQA? (Choose one)

a. 2-4 hours
b. ½ -1 day
c. 1-1½ days
d. 1-2 days

24. Which is not part of the RDQA implementation process? (Choose one)

a. Interpret results
b. Indicator selection
c. M&E framework development
d. Action plan development
e. Site selection

Quality Data Management

25. Accidental or malicious loss of data can be due to: (Choose one)
a. Hardware faults or failure
b. Software or media faults
c. Virus infection or malicious hacking
d. Power failure
e. Human errors by changing or deleting files
f. All of the above

26. A plausible order for Data Life is: (Choose one)

a. Plan, Process, Acquisition, Analyze, Preserve, Publish/Share
b. Plan, Acquisition, Analyze, Process, Preserve, Publish/Share
c. Plan, Acquisition, Process, Analyze, Preserve, Publish/Share
d. Plan, Publish/Share, Preserve, Analyze, Process, Acquisition

Case Definitions Session

27. True or False: One of the main reasons WHO has revised reporting forms is to permit the inclusion of TB cases detected using WHO-approved rapid diagnostics.

a. True
b. False

28. TB terminology was changed to be less judgmental. Select the correct change(s): (Choose one)

a. MDR-TB is now known as RR-TB
b. Defaulter is now known as Lost to follow-up
c. TB suspect is now known as presumptive TB
d. b and c
e. all of the above

Electronic Recording and Reporting Sessions

29. Which of the following is NOT an advantage to a well-functioning electronic recording and reporting system? (Choose one)

a) Data quality
b) Timeliness
c) Managing complex data
d) Upfront costs

30. True or False: You need to have a strong paper-based system in place before implementing an ERR system effectively. (Choose one)

a. True
b. False

Exploring Your Data Session

31. Which software cannot currently be used for double data entry? (Choose one)
32. What are exploratory frequencies good for? (Choose one)

 a. To calculate the error rate
 b. To look for missing data
 c. To do multiple imputation
 d. To do double data entry

33. What are exploratory cross tabulations (2x2 tables) good for? (Choose one)

 a. To derive standard deviations
 b. To do logic checks
 c. To calculate the means
 d. To apply weights

Qualitative Data Quality Session

34. Inter-rater reliability is used in what types of M&E? (Choose one)

 a. Qualitative
 b. Quantitative
 c. Neither
 d. Both

35. Select the output-oriented methods used to assess quality in qualitative research: (Choose one)

 a. Triangulation
 b. Comprehensiveness
 c. Deviant/negative case analysis
 d. All of the above
 e. a and c only

36. The fundamental principles of qualitative research include: (Choose one)

 a. Reflexivity, transparency, comprehensiveness, responsibility, ethical practice, systematic approach
 b. Validity, rigor, confirmability, credibility, trustworthiness
 c. Triangulation, respondent validation, reflexivity, attention to negative cases, transparency, relevance
 d. Rigor, objectivity, representativeness, comprehensiveness, context sensitivity
 e. None of the above

Standards and Benchmarks Session

37. True or False: The WHO standards & benchmarks checklist consists of a set of 13 standards and associated benchmarks with nine standards related to TB case measurements, and one standard related to TB deaths measurement. (Choose one)
43. The lab-confirmed cases vs. clinically diagnosed cases is an example of:
 a. Standard
 b. Benchmark
 c. Both
 d. None of the above

Epi-Info 7 Session

44. True or false: A view is a data entry interface for an individual table.
 a. True
 b. False

45. True or false: It is advisable to use both Microsoft Access and Epi-Info to enter data into the same data table?
 a. True
 b. False

PMDT Session

46. Tracking interim results of MDR-TB patients is important for:
 a. Preventing the development of XDR-TB.
 b. Giving you a chance to improve your PMDT care services.
 c. Increasing the workload of your M&E team.
 d. a and b
 e. All of the above

Paper-Check Session

47. If the data in a particular area are of low quality, do we need a big sample or a little sample to measure the proportion of incomplete records?
 a. Big sample
 b. Little sample

48. In Link Plus, what is a blocking variable?
 a. A means of pre-selecting key variables to reduce the number of comparisons.
 b. A confounder.
 c. An obstacle to assessing data quality.
 d. A sampling strategy.

Under-Reporting Session

49. What are the pre-requisites for a capture-recapture study?
a. Ethical permission to interview TB patients.
b. Unique identifiers.
c. Three independent sources of TB notification data.

50. What are the potential benefits of measuring underreporting? (Check all that apply)
 a. Can identify gaps to target available resources.
 b. Can help improve estimates of TB incidence.
 c. Can identify countries where TB data are so good that incidence can be measured directly from surveillance data.

Data Sharing Session

51. When sharing TB data, what ethical principles should be kept in mind?
 a. Justice
 b. Non-Malfeasance
 c. Respect for Persons
 d. Generalizability

52. How can deductive disclosure be prevented?
 a. Remove all identifying information from a data set.
 b. Keep linking tables under lock and key.
 c. Use password protected data bases and computers.
 d. All of the above

TB/HIV Session

53. What is benchmarking? (Choose one)
 a. A means of identifying outliers through ecological comparison.
 b. A method for triangulation of qualitative data.
 c. A method of verifying the accuracy of data.

54. What are some potential pitfalls of de-duplifying TB data using Excel?
 a. No syntax to re-run if needed.
 b. No audit trail.
 c. Duplicates are removed in order.
 d. All of the above

All Sessions

55. I found this exercise to be: (choose one)
 a. Easy
 b. Difficult
 c. Neither easy or difficult
Theme 1: Avoid Problems

Session 1: Elements of Data Quality: A Game

Objectives:
1. Reinforce the self-study and online components of the data quality (DQ) course.
2. Set a playful, collaborative, and dynamic tone for the course.

Background Preparation to be completed before the session:
1. Complete an online data quality course (1.5 hrs):
 https://training.measureevaluation.org/related-online-courses/data-quality

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 min</td>
<td>A game to work out 16 data quality concepts involving two or more teams competing to develop these concepts and to group them by themes.</td>
<td>Slide presentation with instructions & basic background</td>
<td>• Big blank cards</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Cards with data elements on them</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Sticky tack or tape</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Markers</td>
</tr>
</tbody>
</table>

Homework assignment: None

Session Notes

High quality data have a positive cascading affect on surveillance program’s outcome measures (accuracy, completeness, timeliness)
Basis of M & E as means of improving program performance

Take Home Message

There is no single definitive list of Data Quality elements
There are lots of different ways to look at Data Quality, but the common features should be clear
We already know the basics of Data Quality if you completed the on-line pre-requisite course

Discussion points for debriefing:
1. Data Quality is a multi-dimensional concept. What aspects are most important to you? What aspects are most important for TB control?

Multiple choice questions for assessing comprehension:

1. What is meant by the term “accuracy”?
 a. The level of detail at which data is stored
 b. The lack of bias in the data
 c. The overall quality of the data
 d. The extent to which a value approaches its true value

2. What is meant by the term “data quality”?
 a. The lineage of the data
 b. The generalization present in the source data
 c. The inherent quality of the data as characterized by its accuracy, precision, bias, level of error, etc.
 d. The resolution of the data

TB/HIV Data Quality Game

(60 minutes required)

Introduction

The ostensible objective of the game is for the teams to thoughtfully arrange these pieces of data quality on the wall as a means of better understanding the meaning of the rather abstract 16 dimensions of data quality in practical terms for TB.

In addition, this game is intended to get participants up and moving and talking to each other about technical issues. It is intentionally left a bit vague how teams should function and the fact that there is not a 1:1 relationship between the 3 elements makes it additionally challenging. However this is fine for adult learners who are professional problem solvers. The fewer instructions you can give the better. Teams will no doubt begin to debate and disagree about how data quality definitions, data quality indicators, and data quality elements all fit together or cluster.

Finally, this exercise serves as a check on whether learners have in fact completed the on-line Data Quality pre-requisite and rewards those who have made that early investment in learning.

Materials:
• Big blank cards
• Cards with data elements on them
• Sticky tack or tape
• Markers

This game has three stages: matching, clustering, discussion

1. Form two or three teams.
2. Have each team move to one large blank wall.
3. Give each team (see Elements below):
 a. eight Elements cards with an element of data quality written on it
 b. eight blank Element cards
 c. eight long cards containing definitions (untitled)
 d. eight blank long cards.

 Try to ensure that there is not a 1:1 relationship between elements and definitions, so that the team has to brainstorm definitions and elements.
4. First, each team should try to match up their DQ definitions and their DQ Elements. (15 min) Let them know that if they cannot find an appropriate term to match the definition they have, they should invent an appropriate DQ terms for the given definitions and write them on the blank title cards. If they have Element cards without definitions, they should draft definitions.

5. Second, each team should match a TB example to their DQ-Element+Definition pairings. (10 min) to create trios of DQ element with accompanying definition and a TB example. The ability to link the DQ concept to specific TB examples may seem “advanced” at this point in the training. It may be OK to expose the learners to things they do not yet understand. This will get them thinking and talking and encourage those who do understand to share their knowledge with fellow learners. This sets the stage for more horizontal learning and sharing in the course. If you think this part of the game is too tricky for learners on the first day, you can shift this part of the game to the middle or end of the course. Because it involves moving around, it can be a good energizer.
6. **Third**, each team should group the 16 trios into clusters of concepts that seem to go together on the wall (10 min). This process will involve debate among the members about why things go together.

7. **Fourth**: Have the two teams switch sides of the room to examine the other team's wall (15 min).
 a. Discuss the matching. Do you agree that all the Elements have coherent definitions? Discuss diverging opinions.
 b. Look at the groupings by domain and consider the pros and cons of different ways of organizing these DQ Elements. Is there only one way to do it? Or are their multiple ways to organize the DQ elements?

8. **Wrap Up: Return to Plenary. Ask learners**
 a. What DQ elements were familiar? Which were new? Does everyone understand what is meant by each DQ element? Clarify any misunderstandings.
 b. Which domains were generated by each group to cluster the trios? What was the underlying logic? Were the groups the same or distinct?
 c. What was hard about this exercise?
d. What do you think its purpose was?

Cards to prepare:
The 16 Elements of Data Quality

1. Accuracy
2. Completeness
3. Validity
4. Consistency
5. Appropriateness
6. Coverage
7. Ease of use
8. Relevance
9. Understandability/Interpretability
10. Confirmability
11. Value Added
12. Accessibility
13. Timeliness
14. Confidentiality
15. Security
16. Reputation
17. Objectivity
18. Reliability
Cards to prepare:

These can be laminated for easy re-use.

Data quality Element Cards

- Accuracy
- Completeness
- Validity
- Consistency
Appropriateness

Coverage

Ease of use

Relevance

Understandability/Interpretability
Reputation
Objectivity
Reliability

CARDS WITH DEFINITIONS OF ELEMENTS OF DATA QUALITY

Data Quality Definitions Cards
Accuracy

Data are considered correct: the data measure what they are intended to measure.

Completeness

Means that the information system from which the results are derived is appropriately inclusive. It represents the complete list of eligible persons or units, and not just a fraction of the list.
Validity
Requires minimizing interference, e.g., social desirability, interviewer bias, political pressures to show improvements, progress, and performance.

Consistency
Refers to data that are collected by adherence to protocols and SOPs that do not change according to who is using them and when or how often they are used.

Appropriateness
Implies data without transcription errors or sampling errors.
<table>
<thead>
<tr>
<th>Coverage</th>
<th>The geographic extent of the information system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of use</td>
<td>The simplicity and user-friendliness of the data</td>
</tr>
<tr>
<td>Relevance</td>
<td>The salience and importance of the data for the program</td>
</tr>
<tr>
<td>Understandability/Interpretability</td>
<td>The degree to which the data can be readily grasped and comprehended</td>
</tr>
<tr>
<td>Confirmability</td>
<td>The ability to verify or validate the data</td>
</tr>
<tr>
<td>Value Added</td>
<td>The contribution that the data makes to program performance</td>
</tr>
<tr>
<td>Accessibility</td>
<td>Refers to whether the data are obtainable or not</td>
</tr>
</tbody>
</table>
Timeliness

Refers to the strategic frequency of data collection, data reporting, and feedback loops that facilitate the governance of health programs.

Confidentiality

Means that clients are assured that their personal data are not disclosed inappropriately, and that data in hard copy and electronic form are treated with appropriate levels of security (e.g., kept in locked cabinets and in password protected files.)

Security

Implies frequent data protection, back up, and building in redundancies so nothing is lost.
Reputation
The public perception of the quality of the data and those who generate it

Objectivity
The absence of favoritism or bias
Implies systematic data collection through the repeated use of a scientific instrument or a data collection procedures used under the same conditions

Reliability

Cards to prepare of TB-specific examples of individual Data elements
Accuracy

The smear results in the laboratory register match the smear results in the TB treatment register.

Completeness

Less than 2% missing treatment outcome data
Validity

Over 90% of childhood TB cases diagnosed using a validated scoring system.

Consistency

Using the same case definitions in all the public and private facilities.

Appropriateness

TB among children disaggregated into 0-4 and 5-14 years of age.
Coverage

Percentage of districts (or basic management units BMU) reporting every quarter.

Ease of use

TB data and HIV data both use the same unique identifier

Relevance

All the donors ask for the same set of TB/HIV indicators
Bacteriologically confirmed TB is widely understood to mean either smear positive or GeneXpert positive TB.

The smear results in the laboratory register can be matched to the smear results in the TB treatment register using a unique identifier.
Value Added

Knowing not only how many people have TB, but also how many were screened and then tested so program performance can be assessed.

Accessibility

All aggregated quarterly reports posted on the NTP website.
Timeliness

Annual reports are ready by the first quarter of the following year

Confidentiality

Electronic patient-based records that can be anonymized, encrypted, and emailed

Security

No names on the laboratory forms or samples. Each TB patient and presumptive TB client has a unique ID.
Policy makers quote the data and researchers seek permission to use it. External data audits by independent experts.
Reliability

Clear protocols about handling missing data are followed. All areas of the country define loss to follow up in the same way.

Here is an example of 4 potential clusters, but there are many possibilities. The goal is not to find the “right” clusters, but to catalyze a discussion of when and where data quality issues become important and to whom are they important. There is no right answer.
Cluster 1: Technical Content of Data
- Accuracy
- Completeness
- Validity
- Consistency
- Appropriateness
- Coverage
- Ease of use

Cluster 2: The use of TB/HIV data
- Relevance
- Understandability/Interpretability
- Confirmability

Cluster 3: Exchange of TB/HIV data
- Accessibility
- Timeliness
- Confidentiality
- Security

Cluster 4: The image of TB/HIV data:
- Reputation
- Objectivity
- Believability/reliability

Another potential way of clustering them would be by junctures when data quality issues are discovered or averted:
- Data collection
- Data entry
- Data synthesis
- Data cleaning
- Data quality check
- Data analysis
Session 2: How to produce quality data prospectively

Objectives:
1. Enhance understanding of the best practices for quality data collection, including planning and the data collection life cycle.
2. Understand the importance of TB data dictionaries, SOPs for TB data collection, and choice of software in quality data collection.

Background Preparation to be completed before the session:
1. Introductory EPI-Info 7 video (8:30 minutes) located at: http://www.youtube.com/watch?v=tnWiGylgnV4

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 min</td>
<td>Overview of data quality in practice – SOPS, data dictionaries</td>
<td>guided presentation</td>
<td>Powerpoint presentation on USB stick</td>
</tr>
<tr>
<td>20 min</td>
<td>• Basic background to quality data and Epi-Info 7 demonstration on how</td>
<td>Live demonstration</td>
<td>EPI-Info 7 project</td>
</tr>
<tr>
<td></td>
<td>to make data entry questionnaires and properly enter data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Homework assignment:
1. Read: Epi-Info User Guide on making forms (version 7) and views (version 3)

Take home message: Data management should be planned well in advance of data collection & should continue throughout study/survey to lead to high quality data for analysis

Overview

Quality data leads to confidence in

• Data source &
• Data quality assessments
• Data linkages
Complete & reliable data sets i.e. integrity of the study
Unbiased data

FLOW of TB Data

Data Management

Integrated system that allows for:

- Collection
- Cleaning
- Storing
- Monitoring
- Reviewing
- Reporting

Data Collection

Data collection should be carried out in compliance with regulatory standards
Aim to keep minimal errors & missing data whilst gathering maximum data for analysis
Adoption of best practices to meet objectives

Unique Identifiers

TB and HIV programs should consider the use of a unified unique identifier that combines patient and facility characteristics such as a 17 digit alphanumeric code

Facility code(3 digits)+ BMU code(3 digits)+date of birth(8 digits)+3 letters of name

The IMPORTANT steps

1. PLAN
2. Ensure existence of unique data & audit trail
3. Existence of
4. SOPs (standard operating procedures)
5. Data dictionary
6. Capacity for Data linking
7. Choice of software

PIN or UPIC or UNIQUE ID

The importance of the PIN: example

How link the laboratory file to the case record from?

The importance of the PIN: example

How to link the laboratory file to the case record from?

This is only possible when you use a PIN!
Some definitions
Data dictionary (Metadata) = Contains data about data
Describes nature of database/system catalogue holds info on

- Name
- Type of unique identifiers
- Format
- Coding
- Range of values
- Source
- Access authorization

Indicates which application programs use data so if a change in data structure is contemplated, a list of possibly affected programs can be anticipated

Example: data dictionary

Importance of data dictionary

Facilitates:

- Communication
- Collaboration
- Analysis

Some definitions

SOPs

- Gives full details of all procedures
- Standardizes process by providing step-by-step guide; anyone should be able to perform task in consistent manner
- Describes qualifications roles & responsibilities of all team members, ensuring standardization of performed tasks
- Allows for accountability

Purpose of SOP

- Serve as framework for organizational policy to provide direction and structure
- Written documentation of best practice
- Tells what, how, when, why, and who
- Provide foundation for:
 - job descriptions
 - employee training
 - corrective action and discipline
 - performance review
Elements of a SOP

- Rationale for SOP
- Detailed description of procedure – based on best practice/standards
- Monitoring actions
- Accountability
- Corrective Actions
- Date of last review or revision date

Example of SOP

Putting it all together

Prevention of errors

Prevention of errors is better than correction afterwards!
Takes less time
Therefore, think about the design of your data-entry file as a vaccine against data diseases
Check dataset after pilot data-entry
first questionnaires or fake data
Feedback data-entry errors and agreements made to those who enter data
Change data-entry program where necessary

Discussion points for debriefing:
1. Whose responsibility is data quality?
2. Why is there so much emphasis on SOPs?
3. In your opinion, what is the most important safeguard to ensure data quality?
4. All stakeholders must be involved at all levels.

Multiple choice questions for assessing comprehension:

1. SOPs are:
 a. An international ethical and scientific quality standard for designing, conducting, recording, and reporting research.
 b. A set of written instructions that document routine activity in a step by step guide, and hence standardize procedures.
 c. A set of documents put together to satisfy regulators.
 d. A step by step guide of how to create questionnaires and care report forms for use in the field.

2. The main purpose of a data dictionary is to provide a source of reference in which the _________can look up content and any other relevant information.
a. analyst
b. user
c. designer
d. all of the above
Session 3: Introduction to Form Design and Quality-Assured Data Entry

Objectives:
1. To learn how to create well-designed questionnaires.
2. To appreciate the relative merits of open and closed questions.
3. To master the theory of double data entry.

Background Preparation to be completed before the session:
1. Epi-Info User Guide on making forms (version 7) and views (version 3)
2. Preview the Epi-Info video called “Legal Values” (12 minutes) in the videos folder on USB stick.

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 min</td>
<td>Learn to use CREATE FORMS and ENTER DATA commands in Epi-Info</td>
<td>Powerpoint demo of Epi-Info 7 commands</td>
<td>Powerpoint slides</td>
</tr>
<tr>
<td>45 min</td>
<td>Skills practice in-class assignment</td>
<td>individual skills practice</td>
<td>DemonstrationMDB (Access file and PRJ- Epi- Info file)</td>
</tr>
</tbody>
</table>

EPI INFO 7

Introduction to the Form Designer

Opening the Form Designer

Form Designer Work Areas

The Form Designer has several “work areas”:

The **Menu**

The **toolbar** contains buttons for creating projects, editing the form’s check code, going to the data entry module, and undo/redo.

The **Project Explorer** is where you can add and remove forms from your project, add, edit, and remove pages from individual forms, and work with templates.

The **Canvas** is where fields are placed, moved, and edited.

Form Designer Areas

The **Menu**

The **Project Explorer**

The **Canvas**
The Menu and Toolbar

The Form Designer main menu provides an easy way to access your projects and gives you tools to edit your forms.

The Menu and Toolbar

The Form Designer main menu provides additional tools to help you manage your project and customize your Canvas.

The Toolbar Buttons

The toolbar contains buttons for directly entering a function without going through the main menu.

Creating Projects

New
Open (existing)
Undo
Redo
Check Code editing
Enter Data (module)

The Project Explorer

The Project Explorer is where you can add and remove forms from your project, add, edit, and remove pages from individual forms, and work with templates. Usually, items in the Project Explorer have a right-click context menu. The Project Explorer also has a list of “open fields” that can be dragged directly on to the canvas.

The Canvas

The canvas is where fields are placed, moved, and edited. Fields can be dragged around the canvas by left-clicking to hold them and then moving the mouse. The canvas has a right-click context menu that allows users to add new fields, set the tab order for the current page, and more.

Creating Projects

Module 2 – Form Designer

Form Design

Introduction

Uses Microsoft Access database or SQL server database format
Creates projects (analogy: filing cabinet)
Contains 1 or more forms (analogy: folders)
Each form may have 1 or more data tables (analogy: questionnaire)

Fields (variables) on forms designed to hold data

Field or Variable Types

Each field/variable has its own properties when selected
At least 20 types exist
A **Required** field is mandatory
A **Read Only** field does not allow the placement of the cursor in the field or data entry.
The **Range** property can be applied to Number or Date field types

Field Types and Creating Fields

Module 2 – Form Designer

Field Types

A *variety of field types exist in Epi Info™ 7 to help customize the data entry experience.*

Choosing the right field for the type of data being collected:

- Reduces data entry errors
- Ensures the data collected can be analyzed (meaningful results)
- Allows faster data entry
- Improves user satisfaction with the data entry process

Further manipulations

Try the following:
DELETE a field
Right-click on the **field**. The pop-up menu opens. Click Delete (NOTE: any data previously collected will be deleted & is not recoverable)
EDIT a field
Right-click on the **field**. The pop-up menu opens. Click **CHANGE TO**

Set Tab Order

Tab Order

Manually Change Tab Order

Homework assignment:

1. Watch this short film: 3:31 [Epi Info 7 Skip pattern using an "if, then" statement](http://www.youtube.com/watch?v=Ww4dApIEnTl)
2. Further Refine the Project you created in class and email the file (hint: *see video on packaging data for sharing*)

Homework hand out:

Try this practice session
1. Add your name and mine into data table, and add fake data.
2. Edit form so that the cough label is the same font as the rest of the data, and move to page 2.
3. Familiarize yourself with the navigation menu.
4. Label Page 2 Symptoms, and add the following labels:
a. Wheezing (Yes/No)
b. HIV results (Yes/No)
c. Sex (option button)
d. PTB (Check box)
e. ETB (Check box)
f. Phone number (choosing an appropriate pattern)

5. Follow instructions from Epi-Info to try and create:
 a. Legal values
 b. Comment legal
 c. Codes

Discussion points for debriefing:

1. What is the difference between a variable and a label?
2. What are some of the advantages of using pre-defined fields or variables?
3. Why are some questions better if left open ended? Give an example.
4. Which elements of data quality might be enhanced by open-ended questions?
5. Which elements of data quality are likely to be enhanced by closed-ended questions?

Multiple choice questions for assessing comprehension:

1. At least 20 types of variables types exist and can have either of the following properties:
 a. Required field
 b. A read only field
 c. Range property
 d. All of the above
 e. None of the above

2. Projects in Epi-Info 7 must contain
 a. One or more forms
 b. One or more data tables
 c. Fields/variables
 d. None of the above
 e. All of the above
Session 4: Hands-On Skills Practice in Quality-Assured Data Entry

Objectives:
1. To practice data entry skills using the ENTER DATA command in Epi-Info 7.

Pre-requisite: Session 3: Introduction to Form Design and Quality-Assured Data Entry

Background Preparation to be completed before the session:
1. Watch this video on Epi-Info 7 file management: How-to (3 of 3): Moving Files
 http://www.youtube.com/watch?v=VxMVCdYUJzVo

2. Watch the Epi-Info 7 video: Create a project template.
 http://www.youtube.com/watch?v=uvPpKW1LnmY

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 min</td>
<td>Overview of ENTER DATA command in Epi-Info 7</td>
<td>Live demonstration</td>
<td>Demonstration MDB (Access file and PRJ- epi info file)</td>
</tr>
<tr>
<td>45 min</td>
<td>Skills practice (Class/homework) Enter data into the questionnaire</td>
<td>Individual hands-on practice</td>
<td>Demonstration MDB (Access file and PRJ- epi info file)</td>
</tr>
</tbody>
</table>

Homework assignment: See next page.

Session Notes
In Epidata, Epi Info, SPSS, Access,
Where possible, build in checks to prevent typing errors
In case of sex, only ‘1’ and ‘2’ or ‘M’ and ‘F’ can be entered (and ‘9’ for missing)
Double data entry to reveal typing errors

Which software for data entry?

EPI-DATA or EPI-Info (older version) are best for double data entry at the present time.
See: www.tbrieder.org for detailed instructions on double data entry using EPI-DATA
As of July 2013, EPI-INFO 7 does not have a functional double data entry module

EPI-Info 3

EPI-Info 3.02 does have a robust data comparison feature and can be used for double data entry.

Excerpt from H.Rieder Epi Data course:
Data entry errors will occur, and worse, *to an unknown extent.* The only way, and the only acceptable one, is to enter the data twice into two different files, and then to compare the two files for discordances. Any discordance uncovered will then be corrected against the original paper record.

Rationale for double data entry (Rieder, 2013)

the probability of committing the same error in the same field twice when data entry is done independently by two persons is very small.

You **MUST** have Unique Identifiers for each record.

Example double data check in Excel

Proposed Data Life Cycle

Acquisition

Methods
New data collection (SOPs)
Converting/transferring legacy data
Sharing/exchanging data
Purchasing data
Security Requirements
MOUs
Data Sharing Agreements

Data Management Software

Depends on complexity of study
Depends on different types of observational units at different hierarchical levels
Simple data structures at one level can be handled by:
Statistical packages, e.g. SAS, SPSS, Status, Epi-info, CS-Pro, and R.

Data Management Software

- Spreadsheet packages, e.g. Excel.
- Relational database management systems, e.g. Access, dBase
- Geographic information systems are also available for storing spatial data.
- Statistical, spreadsheet and database management packages have overlapping facilities for data management, and all can now 'talk' to each other.

Data Management Software

MS Excel

- Cannot handle longitudinal data properly
• Cannot responsibility handle anything more than simple edit checks require programming
• Limited ability to define data types
• Can't select subsets of data
• No audit trail

MS Access...

• Can easily handle longitudinal data
• Can do edit checks and validations
• Easy to import and merge data files
• Can easily define data types
• Can select subsets of data
• No audit trail
• Is being phased out by Microsoft

Epi-info 7 Handout

Follow these instructions in Epi-Info and try to create a data entry file:

If using version 3, open the program, click on Make View, highlight the File Tab and select NEW. This should lead to the popup window requesting the name for a new project. Name it Training by typing TRAINING in the file name box. Click open, and then type the name of the view (questionnaire) in the new pop up window. This is your actual view file. Name it <Train1>.

Click on the INSERT Tab and follow the instructions to add the following variables:
1. LABEL: Name of questionnaire
2. TEXT: Clinic name
3. Numerical: TB_ID
4. Date <dd/mm/yyyy>: Date of lab test
5. Yes/No: Wheezing
6. Check box: PTB
7. Text: First name
8. Text: Last name
9. Numerical: Cough (Insert legal values)
10. Numerical: Fever (Insert legal value)
11. Text: Night sweats (Limit the length of the text field)

If using version 7, open the program, then click on Create Forms, and select new project on the top left. This should lead to the popup window asking the name for a new project. Name it Training by typing TRAINING in the file name box. Then go to the bottom of the
popup window and give the form a name. This is your actual view file. Name it <Train1>. End by clicking OK.

Using the relevant command from the field command on the left window, follow the instructions to add the following variables:

1. **LABEL:** Name of questionnaire
2. **TEXT:** Clinic name
3. **Numerical:** TB_ID
4. **Date <dd/mm/yyyy>:** Date of lab test
5. **Yes/No:** Wheezing
6. **Check box:** PTB
7. **Text:** First name
8. **Text:** Last name
9. **Numerical:** Cough (Insert legal values)
10. **Numerical:** Fever (Insert legal value)
11. **Text:** Night sweats (Limit the length of the text field)

Discussion points for debriefing:

1. Do you understand how to CREATE forms, with the necessary variables and checks, skip patterns, and Tab orders?
2. Do you understand how to ENTER DATA the commands and how to switch back to CREATE Form format to update your questionnaires?
Data Entry Homework Instructions:
Enter the data below as it is (small & big cap for names) into your Epi-Info form. Ensure all variables are present and in the correct format.

<table>
<thead>
<tr>
<th>Record No.</th>
<th>Clinic Name</th>
<th>TB ID</th>
<th>Date of Lab Test</th>
<th>First Name</th>
<th>Last Name</th>
<th>Cough</th>
<th>Fever</th>
<th>Night Sweats</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>1</td>
<td>09/09/2011</td>
<td>Thomas</td>
<td>JEFFERSON</td>
<td>0</td>
<td>1</td>
<td>Over 2 weeks ago</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>2</td>
<td>31/08/2012</td>
<td>George</td>
<td>WASHINGTON</td>
<td>1</td>
<td>1</td>
<td>Last 2 weeks</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1</td>
<td>01/06/2012</td>
<td>Ben</td>
<td>FRANKLIN</td>
<td>0</td>
<td>1</td>
<td>Over 6 months ago</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>2</td>
<td>22/06/2012</td>
<td>Abraham</td>
<td>LINCOLN</td>
<td>1</td>
<td>1</td>
<td>Over 6 months ago</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>4</td>
<td>31/05/2013</td>
<td>SOCRATES</td>
<td></td>
<td>1</td>
<td>1</td>
<td>Last 2 weeks</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>3</td>
<td>23/02/2012</td>
<td>Napoleon</td>
<td>BONAPARTE</td>
<td>1</td>
<td>1</td>
<td>Over 6 months ago</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>3</td>
<td>24/02/2013</td>
<td>Marie</td>
<td>ANTOINETTE</td>
<td>1</td>
<td>0</td>
<td>Over 2 weeks ago</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>2</td>
<td>01/01/2013</td>
<td>George</td>
<td>WASHINGTON</td>
<td>1</td>
<td>0</td>
<td>Last 2 weeks</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>1</td>
<td>31/03/2012</td>
<td>Ben</td>
<td>FRANKLIN</td>
<td>1</td>
<td>1</td>
<td>Over 6 months ago</td>
</tr>
</tbody>
</table>
Session 5: Country Experiences in Developing an Electronic R&R System

Objectives:
1. To explore different ERR approaches.
2. To share lessons learned in ERR system development.

Background Preparation to be completed before the session:
1. Electronic Recording and Reporting for Tuberculosis Care and Control (WHO): whqlibdoc.who.int/publications/2012/9789241564465_eng.pdf

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 min</td>
<td>TIBU movie on Kenya ERR system</td>
<td>Video stimulus</td>
<td>Video</td>
</tr>
<tr>
<td>60 min</td>
<td>Panel discussion with countries on their experiences with ERR planning/implementation (Indonesia, Kenya, Namibia/Vietnam?)</td>
<td>Prepared questions posed to panelists (30 minutes) in addition to questions directly from the audience (30 minutes)</td>
<td>Prepared questions</td>
</tr>
</tbody>
</table>

Homework assignment: none

Panel discussion - Experiences with ERR planning/implementation

Panel questions

1. Can you briefly describe what ERR system(s) you have in place in country and what the scope of the system is? (i.e. case-based? TB or MDR TB only? # sites/level of use? How long it’s been in place?)
2. What was the process your NTP went through to select the system(s) currently being used?
3. How long did the process take from envisioning an ERR system to having it ‘up and running’?
4. What would you do differently in the planning/roll-out/implementation process?
5. If you were advising a neighboring country on how to implement an ERR system effectively, what top three tips on implementing an ERR would you give them?

Additional questions for the group

1. What are your country’s experiences with linking TB ERRs with other systems (i.e. HIV, HMIS)? What has worked well? What hasn’t?
2. How has your country dealt with the issue of changing dx and tx approaches and TB case definitions? How well/not well can ERR systems respond to changing technology on the diagnostics side (i.e. Xpert)?
3. How have your ERRs improved or complicated data quality?

Discussion points for debriefing:

1. What was/has been the biggest challenge for your country in the establishment of an ERR system?
2. How long did the development process take, from system selection to maintenance?
Session 6: How to Develop Electronic Recording & Reporting Systems

Objectives:
1. Identify the advantages & pitfalls of ERRs.
2. Recognize questions to ask when developing an electronic system.
3. Discuss general steps to follow in the ERR system development process.

Background Preparation to be completed before the session:
 See also: www.biomedcentral.com/1472-6947/12/125

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 min</td>
<td>Discuss the advantages and potential pitfalls of implementing an ERR system.</td>
<td>Presentation/discussion</td>
<td>PowerPoint presentation</td>
</tr>
<tr>
<td>15 min</td>
<td>Introduce participants to key questions to ask when defining the scope of an ERR system.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 min</td>
<td>Highlight questions that should be asked when defining the detailed system requirements.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 min</td>
<td>Discuss the general steps for selecting and implementing a system.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Homework assignment:
1. Draw a map of the data flow in your country's surveillance system and identify which (if any) points could or should be electronic.

Session Notes
Electronic Recording & Reporting

Data quality perks of ERRs
Data collection (range checks, legal values, automated unique IDs – no duplicates)
Data monitoring
Data transfer (de-identification, packing, e-mailing)
Data sorting and filing
Data entry (possibilities of double entry)
Data validation (automated queries)
Data cleaning
You want an electronic system?

Cyclical implementation process (MSH)

Envisioning your ERR system

Looking at the organization

Is there a functioning TB recording and reporting system in place?

An ERR cannot fix an already broken system!

Who needs to provide overall oversight and participate in decision-making related to the adoption, design and implementation of an electronic recording and reporting system for TB?

Define the scope

What do you want your system to look like?

Defining the scope

What are the primary objectives of building an electronic recording and reporting system for TB care and control?

Who are the users and beneficiaries of the system?

Which patients will the system cover?

All diagnosed TB patients;
Only a subset (i.e. MDR-TB patients);
Initially only a subset, but will expand later
or
Links to different systems so all patients are covered for national surveillance.

Defining the scope

What are the primary objectives of building an electronic recording and reporting system for TB care and control?

Who are the users and beneficiaries of the system?

Which patients will the system cover?
Which locations will the system cover?

Will the system be a stand-alone system or will it be integrated with other electronic systems?

Linking and ‘talking’ with other systems

ERRs rarely exist in isolation;
Other systems may already have element of TB R&R (i.e. vital registration, HIV, lab, pharmacy);
3 options:
Interoperatibility – ability to send/receive data b/w systems – possible if you plan for it, but very difficult to do after the fact!
Module/extension of existing system (i.e. Nat. patient record system)
No exchange/interaction w/ other system;

Defining the scope

What are the primary objectives of building an electronic recording and reporting system for TB care and control?
Who are the users and beneficiaries of the system?
Which patients will the system cover?
Which locations will the system cover?
Will the system be a stand-alone system or will it be integrated with other electronic systems?
What elements of paper-based recording and reporting should be maintained?

What data items need to be captured?

What is essential vs. useful vs. unnecessary?
Develop and update a data dictionary to clearly outline the data held in the system (variable names, definitions, codes, relationships b/w data items, etc.)

Defining the scope

What are the primary objectives of building an electronic recording and reporting system for TB care and control?
Who are the users and beneficiaries of the system?
Which patients will the system cover?
Which locations will the system cover?
Will the system be a stand-alone system or will it be integrated with other electronic systems?
What elements of paper-based recording and reporting should be maintained?
What data items need to be captured?
Is the basic unit of recording clinical data a patient, a case or a group of cases?

Is the basic unit of recording clinical data a patient, a case or a group of cases?

Individual data

Patient-based records
 (ideal, using unique national personal identifier)

Case-based records
 thanked totals only

Doesn’t offer full benefits of an ERR system; not encouraged.

Defining the scope – lessons learned

ID which items are ‘non-negotiable’ and which are desirable (but optional);

Unrealistic to expect a completely electronic system – paper will still likely play an important role;

Think about interoperability BEFORE creating the system – nearly impossible to make systems talk after the fact;

Parallel runs of paper and electronic systems may be needed initially, but limit to test period to avoid chronic ‘pilot project’ – data may suffer;

Identifying detailed requirements

Capabilities

Who enters data, where and when will data be entered, and how do data flow within the system?

What data quality assurance processes are required?

How is feedback provided to system users?

What standard outputs, reports and other analyses are required?

What are the data entry screen or interface requirements?

How will data confidentiality and security be ensured?

Resources

What staffing is required?

What user support is needed?

What technical support is needed?

What level of service availability, response times and contingency planning is required?

What funding is required for both start-up and routine operations?

How long will electronic data be retained and will they be archived?

Infrastructure
• How is the electronic recording and reporting software made available to users?
• What devices will users need to use the system?
• What database software is required?
• Where will the servers be located?
• What communications networks are needed?
• What are the electrical power needs?

How to get there?

Cyclical implementation process (MSH)

Action Plan

Purpose: Define & organize the implementation process; critical since several stakeholders may be involved – keep everyone on the same page; builds on and incorporates requirements identified in needs assessment process.

Action Plan components

• System description
• Roles & responsibilities
• Human resources
• Funding
• Project plan & timeline
• Expected outcomes

Action plan – lessons learned

1. Clear strategy for transitioning from paper-based to ERR (concurrent use or transfer paper to ERR?)
2. Engage stakeholders early (ex. action planning workshop);
3. Engage users of other systems in country (HIV, drug, etc.) – leverage resources/learn from their experience;
4. Experienced project manager/team is priceless!

Action plan – lessons learned (2)

• Up-to-date SOPs for current R&R system;
• Plan to develop/disseminate training materials (for sustainability);
• Exit strategy and hand over plan if external agencies involved;
• Learn from others.

Cyclical implementation process (MSH)

Development/adaptation – lessons learned
• Pilot training courses, not just ERR system – hard to change training during roll-out;
• Freeze versions (training materials & system) during scale-up; fix bugs in systematic way for version control/efficiency;
• Staff challenges during roll-out...

Human resource troubleshooting during roll-out

• Reluctance to change way of working (hierarchies, roles, etc.);
• Redundancies → lower morale & poor performance;
• Reconcile expectations of users and managers;
• High staff turnover demands regular training;
• Misaligned job roles (under/over-qualified for new work).

Cyclical implementation process (MSH)

Maintenance

Maintenance – lessons learned

• Long-term maintenance/evolution plan (ground rules for ongoing implementation; funding);
• System to record/track requested & implemented changes – increase transparency & efficiency;
• Disaster recovery or business continuity plan (worst case scenario troubleshooting)
• Server crash
• NTP building burns down
• Funds cut

Monitoring of new system

Needed to show progress in roll-out, ID weaknesses & demonstrate impact of system.

Sample Indicators

SYSTEM PERFORMANCE
• % of ERR system users trained and active out of target number of users
• Cumulative annual or monthly downtime of central server (for web-based systems)

SYSTEM COVERAGE
• # of TB units where the system has been rolled out and is in use (and % out of all units in the country)

DETECTION, REGISTRATION AND TREATMENT
● # of TB cases diagnosed and registered in the system (and % of all cases)
● % of MDR-TB suspects screened and registered in the system out of all MDR-TB suspects screened and registered.

Sample Indicators

TB PROGRAM ACTIVITY
● # of TB or DR-TB patients registered in the system who started treatment during a given period.
● # and % of TB patients registered in the system during the previous calendar year for whom treatment outcomes have been recorded.

DRUG MANAGEMENT (IF APPLICABLE)
● Number of stock outs at sites using the drug management component of the system

Remember! Major upgrades will likely need a new implementation cycle

A few approaches

e-TB manager (https://www.etbmanager.org)
Open MRS (http://openmrs.org/demo/)
TIBU - Kenya’s system (http://www.youtube.com/watch?v=zEXjm51o_64)
- Open-source, web-based tool for managing NTP information
- Integrates data across all aspects of TB control, including information on suspects, patients, medicines, laboratory testing, diagnosis, treatment, and outcome.

Open MRS

Developed by Regenstrief Institute & Partners in Health
Software platform & reference application that enables design of a customized medical records system with no programming knowledge (although medical and systems analysis knowledge is required).
Open-source
For more information: http://openmrs.org/

Discussion points for debriefing:

1. What are some of the big picture questions you want to ask when you are first defining the scope of your ERR?
2. What are the four general phases of implementation of an ERR?

Multiple choice test questions to assess comprehension:

1. Which of the following is NOT an advantage to a well-functioning electronic recording and reporting system?
 a. Data quality
b. Timeliness
c. Managing complex data
d. Upfront costs

ANSWER: D. ERR systems often require considerable upfront costs. There are also costs necessary to maintain the system, but these aren’t always significantly more expensive than paper-based system costs.

2. True/False: You need to have a strong paper-based system in place before implementing an ERR system effectively.

ANSWER: True. ERR systems cannot fix a broken paper-based system. A strong paper-based system is needed to build an electronic system.
Session 7: How to Ensure Quality of Qualitative Data

Objectives:
1. To distinguish between output-oriented and process-oriented quality assurance (QA)
2. To describe key QA concepts: transparency and reflexivity.
3. To practice coding narrative responses to open-ended questions.

Background Reading:
1. Qualitative research review guidelines – RATS: http://www.biomedcentral.com/info/ifora/rats?layout=printer

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 min</td>
<td>Overview of TB qualitative research.</td>
<td>Guided discussion/interactive</td>
<td>Power point</td>
</tr>
<tr>
<td>30 min</td>
<td>Overview of output-oriented quality assurance methods.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 min</td>
<td>Skills practice in critique of quality of qualitative data.</td>
<td>Group exercise</td>
<td>Interview transcript</td>
</tr>
<tr>
<td>15 min</td>
<td>Overview of process-oriented quality assurance methods.</td>
<td>Guided discussion/interactive</td>
<td>Power point</td>
</tr>
<tr>
<td>15 min</td>
<td>Skills practice</td>
<td>Inductive coding exercise</td>
<td>Transcript paragraph</td>
</tr>
</tbody>
</table>

Homework: None

Session Notes:
Why do Qualitative Research for TB?
• Behavior
• Social & political organization of people, groups, & organizations
TB deals with
• TB prevention
• Access to services
• Diagnosis
• Adherence
Qualitative research is essential to improving
• Processes and practices
• How/why people relate to programs & interventions
• The meanings it generates
• The effects this has on treatment
Need to understand Qualitative Research
Must be suitable for the research question, e.g. not good for hypothesis testing
Not ad hoc – follows a methodology
Requires technical expertise in qualitative methods

Assessing Quality in Qualitative Research

- Output-oriented
- Process-oriented

Output-oriented Quality Assurance
- Post-hoc – external process
- Objectivity
- Establish distance from the data

Quality is conceptualized in relation to theoretical constructs like validity, rigor, credibility, relevance, etc. (evidence-based model)
Demonstrate quality in research outputs
Use of methods/techniques deemed to be indicators of quality, e.g. checklists (RATS)

Output-oriented QA: Design Phase
- Study methods
- Research aims/objectives were clear
- Appropriate method was selected based on research question
 - Observations
 - Interviews
 - Case studies
- Determined etic codes if appropriate

Output-oriented QA: Data Collection
- Used an explicit analytic framework, e.g. Demonstrated how the analytic procedure was consistently applied

Output-oriented QA: Analysis
- Transcription and translations are validated
- Multiple independent coders
- Ensure strong intercoder agreement
- Compare sets of codes assigned to specific text passages by each coder
- Compare how each code was used by the coders
- Measure agreement by using the Kappa statistic
Q: What do you think causes tuberculosis?
A1: TB sometimes caused by working too much and too hard (overworking). For example, some Vietnamese that work beyond their strength like farmers, factory workers, are working all day (some work 12, 14 hrs/day, and 7 days/wk) and when home and very little and also no nutritional food come. When you overwork and don’t have enough calories in your body, it is very easy to get all kinds of germs to enter your body because your body’s immune system is not strong enough. Also, they may acquire the TB germ from someone that has TB. Some cause by smoking too much, or drinking. The amount of nicotine and alcohol that you take into your body will be very harmful for lungs (if you have been smoking and drink a lot).
A2: I was told that everyone does have the Koch virus in his/her body, and if one is overworked without proper nutrition can get Tuberculosis.

Output-oriented QA: Analysis

- Ensure that all cases were included and reported, not just those that support conclusions
- Deviant/negative case analysis
- Search for and discuss elements in the data that seemingly contradict emerging patterns
- Refine the analysis until it explains all or most of the cases (theory building)

Output-oriented QA: Analysis

Triangulation: cross-check information and conclusions via use of multiple procedures or sources
Common types of triangulation

- Method – compare data that comes from different methods, e.g. interviews and observations
- Data – compare data from different sources, e.g. interviews with different interest groups
- Agreement may confirm the interpretation
- Assumes that any weaknesses in one method will be compensated by strengths in another

Output-oriented QA: Conclusions
• Member/participant validation of findings
• Compare researchers’ account to participants to determine level of agreement
• Use this method as part of error reduction rather than an indicator of credibility
• Researchers and participants have different roles/perspectives, i.e. researchers’ account is designed for a wide audience
• Peer review of findings

Process-oriented Quality Assurance

• Internal, on-going
• Consider quality throughout the research process
• Fundamental, internal set of values/principles indicative of the qualitative approach
• Principles must be understood and upheld by the M&E team

Principles of Process-oriented QA

• Reflexivity of the researcher’s position, assumptions and practice
• Transparency of decisions made and assumptions held
• Comprehensiveness of approach to the research question
• Responsibility towards decision-making acknowledged by the researcher
• Upholding good ethical practice throughout the research
• Systematic approach to designing, conducting and analyzing a study

Reflexivity = Sensitivity to the ways in which the researcher and the research process have affected the data, including

• Role of prior assumptions and experience
• Personal and intellectual biases
• Effects of personal characteristics, e.g. age, sex, social class, professional status, etc.
• Researchers must document their beliefs, attitudes, values and reactions to the object of the study
• Active, iterative process

Reflexivity
Personal
Reflect on how values, experiences, interests, beliefs, social identities, etc. affect the research
Epistemological
Reflect on how the research question, design, and analysis define or limit the results and conclusions
Could the research question have been investigated differently and would this have resulted in a different conclusion?

Facilitators of Reflexivity

.Use field diaries to explore and capture assumptions and biases
.Hold on-going dynamic discussions of quality issues among the research team
.Ensure researchers’ comprehension of and engagement with their role in assuring quality

Transparency

Document all decisions and interpretations made at each stage of the research (audit trail)
Design
•Sampling techniques: rationale and theory behind them

Data Collection

•Description of context/setting
•How and why the techniques/focus were changed in response to data

Analysis
•Internal validity: sufficient information about pathway from data to conclusions

Conclusion
•.Qualitative research requires theoretical expertise
•.Several ways to assess the quality of qualitative research
•.Basic strategy: systematic, self-conscious research design, data collection, analysis/interpretation, and communication

Inductive coding exercise-
1) independently pick the key themes in the following response (5 min)
2) share with the group your “codes” – i.e. concept + definitions (10 min)
3) note the subtle and not so subtle differences in definition, scoping of the codes to emphasize the importance of code books for quality analysis

Inductive Coding Exercise*
Q: What do you think causes tuberculosis?
A1: TB sometimes caused by working too much and too hard (overworking). For example, some Vietnamese that work beyond their strength like farmers, factory workers, are working all day (some work 12, 14 hrs/day, 7 days/wk) and when come home and very little and also no nutritional food. When you overwork and don’t have
enough calories in your body, it is very easy to get all kinds of germs to enter your body because your body's immune system is not strong enough. Also, they may acquire the TB germ from someone that has TB. Some cause by smoking too much, or drinking. The amount of nicotine and alcohol that you take into your body will be very harmful for lungs (if you have been smoking and drink a lot).

A2: I was told that everyone does have the Koch virus in his/her body, and if one is overworked without proper nutrition can get tuberculosis.

Homework assignment: Review the interview video on the USB stick and identify data quality issues from the data collection phase.

Discussion points for debriefing:
1. Explain reflexivity in qualitative research.
2. Compare and contrast output-oriented and process-oriented quality assurance.

Multiple choice test questions to assess comprehension:

1. Select the output-oriented methods used to assess quality in qualitative research:
 a. Triangulation
 b. Comprehensiveness
 c. Deviant/negative case analysis
 d. All of the above
 e. a and c only

2. The fundamental principles of qualitative research include:
 a. Reflexivity, transparency, comprehensiveness, responsibility, ethical practice, and systematic approach.
 b. Validity, rigor, confirmability, credibility, trustworthiness.
 c. Triangulation, respondent validation, reflexivity, attention to negative cases, transparency, relevance.
 d. Rigor, objectivity, representativeness, comprehensiveness, context sensitivity.
 e. None of the above.
Interviewer: Do you consent to have this conversation recorded?
Respondent: Yeah, It’s ok.

QN.1 Interviewer: Think about your community, what are the main health problems in this community?
Respondent: I am just a visitor, I was brought here when I became sick, was living in QQQQQ.

Interviewer: Probe: That means you don’t actually know what the health problems are in this community??!!??
Respondent: No.

Interviewer: OK, well let’s continue..

Qn.2:
 Interviewer: In your opinion, what is TB?
I was told that TB is airborne.

Interviewer (Probing): Ok, yes, that may be how one gets it. But what do you think TB is?
Respondent: I am not sure what you ask... For my case, I had boils and cough. I was taken to ZZZZZ and got treatment.

Interviewer (Probing): yes that is where I am heading. I am wondering what you feel TB is about. What it looks and feels like.
Respondent: At times it feels tiring, like wasting away ...but then it can feel like just a nagging cold sometimes. It depends..

Probing: Depends on what (patient’s name)?
Respondent: Who you are... what else is...there—happening—going on in your life.

Qn.3: What are the different TB names in this community?
Respondent: Am not very sure... --as I told you before

Probing: just try!
Respondent.: Besides TB..., I don't know.... Perhaps tuberculosis... some people may call it "consumption"... or "the white plague" but those are old names...I don't know if they are used here.

Qn. 4
Interviewer: How does one get TB?
Respondent: It's airborne.

Probe: Is that all you know?
Respondent: Yes
QN.5
Interviewer: How did you know that you had TB?
Respondent: I went to ZZZZ and was checked with an x-ray'

QN6.
Interviewer: In your opinion, which part of the body is mainly affected by TB?
Respondent: It's the chest.

Probe: Anything else?
Respondent: NO.

QN.7
Interviewer: What diseases are associated with TB?
Respondent: I also had ulcers, even fever.

Interviewer: Is there any other disease which you think is associated with TB?
Respondent: Even stomach ache.

QN.8
Interviewer: Who in your opinion is commonly affected by TB?
Respondent: It affects both men and women.

QN.9
Interviewer: Why do you think it affects both men and women?
Respondent: Because when your chance has come, you will get it.

QN.10
Interviewer: What of young people?
Respondent: It affects all, even the newborns.

Interviewer: Why do you think it affects both young people and newborns?
Respondent: Sometimes, they say if the family once had TB, then the children will also develop it.

QN.11
Interviewer: What made you decide seek health care?
Respondent: I wasn't eating, I was vomiting, I had lost weight and had cough. People were saying its HIV/AIDS.

QN.12
Interviewer: Where did you seek health care?
Respondent: I went to Buluba, they took my blood sample, checked it and found it wasn't HIV/AIDS. They also performed a sputum test and x-ray and discovered it was TB. I used to overwork until late in the night, around 2.00 am. I think that's how I got it from the coldness.

Interviewer: What are the reasons for your choice?
Respondent: From VVVV, I was referred to MMMM and then from MMMM, I was told that there is also treatment in BBBB H/C and I was referred to there.
Interviewer: Now, there are people who decide to go to traditional healers or health facilities. What made you decide to go to a health facility?
Respondent: Because this kind of illness isn’t treated by traditional medicine.

Interviewer: How long is the treatment period?
Respondent: I was told 8 months.

QN. 13
Interviewer: What problems do you encounter in following up treatment?
Respondent: Transport. <PPPPP> is far, yet I can’t walk. I spent two months admitted in the hospital, couldn’t turn on my own, they were only helping me.

QN.14
Interviewer: In your opinion, do you think TB cures?
Respondent: I was told it cures.
Probe: But in your opinion, do you think it cures?
Respondent: Yes, because now, there is a very big improvement from the situation I was in.
Probe: How has your situation improved, exactly?
Respondent: I can eat now and my back is aching less. When I move I do not feel that I am carrying a heavy weight.

QN.16
Interviewer: Please, describe the attitude of health workers towards TB patients? When you are a TB patient, how do they treat you?
Respondent: They treat you as if you were like any other patient.
Probe: Yes, what does that mean exactly?
Respondent: They make you wait for them in the early morning and when they see you, they are rushing through to get to the next one. Some have the friendly ways, but some are cold like stones.

QN.17
Interviewer: What of the community members, how do you they treat you?
Respondent: They are good, they don’t treat me badly.

QN.18
Interviewer: What is your opinion about TB health services?
Respondent: They give you tablets or injections.
Probe: I mean, how do you find it? Do you think it’s good?
Respondent: The treatment is good because they don’t ask for money.

QN.19
Interviewer: What are the different ways used to prevent diseases among children in this community?
Respondent: They are immunized against measles, polio, TB.
Interviewer: What is your opinion about immunization?
Respondent: When a child is immunized, he/she isn't prone to diseases like one who was not immunized. So, it's good.

QN.22
Interviewer: Why do we immunize against TB?
Respondent: To ensure they don't spread the infection to other people.

QN.23
Interviewer: What is your opinion about TB immunization?
Respondent: It avoids spreading diseases.

Probe: Anything else? Is there any fear you have towards TB immunization?
Respondent: No.

QN.24
Interviewer: How does it protect us?
Respondent: Don't know. But when one is immunized, he or she doesn't contract diseases. Blood is heavy; when the vaccines power is in your body, the disease will meet the drug. I think that when a child is still young; he is immunized so that when there is a disease outbreak, it will find that he is already immunized.

Probe: Any other ideas?
Respondent: germs of that disease are taken and used as "Askaris" that weaken that disease in case it infects. One who is immunized is different from one who is not. When there is measles outbreak, a child who was not immunized against it will be seriously infected, but one who was immunized has a mild attack.

I think they should be giving us support, us people in the rural area, we are helpless, they should give us things like ground nuts, mosquito nets, seeds for planting, etc.

QN.25
Interviewer: Does it protect us 100%?
Respondent: I don't know.
Session 8: Data Management of Large Electronic Datasets

Objectives:
1. To understand the basis of continuous data management throughout the lifecycle of project and the involvement of every stake holder at every step.

Background Preparation to be completed before the session:
1. Understanding and Using Tuberculosis Data. WHO 2014 Chapter 2 Analysis of case-based TB notification data
2. Watch this video on confidential data sharing protocols: Epi Info 7 Packaging data for sharing
 http://www.youtube.com/watch?v=1rKLAPRp71g
3. How to use Epi-Info Compare Utility v. 3.4.3 (**NOTE for OLD VERSION OF EPI_INFO) new Epi-info 7 has no way to check double entered data yet.
 http://www.youtube.com/watch?v=24gBswHdZ8U

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 min</td>
<td>Re-iterate good data management best practices, especially in light of BIG DATA (electronic).</td>
<td>Guided discussion demonstration</td>
<td>Powerpoint slides</td>
</tr>
<tr>
<td>30 min</td>
<td>Show audit trails, security features, how to do a query and logic checks.</td>
<td>demonstration</td>
<td>Big TB surveillance database in EPI-Info7</td>
</tr>
</tbody>
</table>

Homework:
Using the sample TB patient database on the USB stick, identify all the security features.

Topics to be covered
Change theory
Data quality activities within the data management system
Data quality responsibilities by level
Data quality assessment tools
Connecting Data & Health Outcomes
Who/What Needs to Change?
Overview of Change Theory & Basic Principles
Despite people’s conviction about a course of action, they often need prompts and triggers (cues to action) which move them forward
Behaviors may resist change if they have significant social costs or reinforcements in institutional cultures
Factors that Influence Behavior Change
- Expected Outcomes
- Intention
- Self-Image
- Skills
- Self-Efficacy
- Emotions
- Perceived social norms

Effective Change Process
Principles of Effective Change

Data Management System Components

M&E Structures, Functions, and Capabilities
Indicator Definitions & Reporting Guidelines

Data Collection & Reporting Forms/Tools
Data Management Processes
Training
Evidence-based Decision Making
Data Quality Responsibilities
Each level of the health system has its own responsibilities for maintaining high quality data
DQ Responsibilities – Health Facility
DQ Responsibilities – Intermediate Level
DQ Responsibilities – NTP/M&E Unit
DQ Assessment Tools

Discussion points for debriefing:

1. Whose responsibility is data management?
2. Describe steps in data management, starting with the earliest.

Multiple choice questions for assessing comprehension:

2. Accidental or malicious loss of data can be due to:
 a. Hardware faults or failure
 b. Software or media faults
 c. Virus infection or malicious hacking
 d. Power failure
 e. Human errors by changing or deleting files
 f. All of the above

3. A plausible order for Data Life is:
 a. Plan, Process, Acquisition, Analyze, Preserve, Publish/Share
 b. Plan, Acquisition, Analyze, Process, Preserve, Publish/Share
c. Plan, Acquisition, Process, Analyze, Preserve, Publish/Share

d. Plan, Publish/Share, Preserve, Analyze, Process, Acquisition

e. None of the above
Session 9: Quality-Assured Joining of TB Data Sets with a Unique ID

Objectives:
1. To learn the preparatory steps required for linking.
2. Introduce learners to performing de-duplication procedures on datasets.
3. To demonstrate the use of the join and concatenate functions in Epi-Info for joining two data sets.
4. To reiterate the importance of a unique ID.

Background reading:
1. 7:37 min Methods and hazards of deduplication in Excel
 http://www.youtube.com/watch?v=6HNX_tk2VxU
2. How To Merge / Join Data From Tables In Excel Using vLookup
 http://www.youtube.com/watch?v=3tk_Mif7040

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 min</td>
<td>Principles of merging</td>
<td>Presentation</td>
<td>Powerpoint</td>
</tr>
<tr>
<td>20 min</td>
<td>Importance of preparation of datasets and deduplication</td>
<td>Presentation</td>
<td>● Powerpoint</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Deduplication video</td>
</tr>
<tr>
<td>20 min</td>
<td>Merging datasets with a unique ID using the join and concatenate functions in EPI-Info 3</td>
<td>Live demonstration</td>
<td>2 datasets for joining</td>
</tr>
</tbody>
</table>

Homework: None

Session Notes:
Record Linkage with Unique IDs

Questions for adult learners
1. How do you usually link your data?
2. What do you do with the missing identifiers?

Why link?
Record linkage carried out to
Accurately identify 2+ records from same entity (person, hospital, community, geographical area etc)
Consolidation of different databases into 1 central database (looks for duplicates-skews data)

Introduction
Record-linkage highly sensitive to quality of data
The potential for linkage varies greatly between countries according to how info collected & identified

Importance of record linkage
Creates data required for examining health of the public & health care system itself. Improve data holdings, data collection, quality assessment, and the dissemination of information.
Data sources can be examined to eliminate duplicate records, identify underreporting & missing cases

Importance of record linkage tool
Creates data required for:
- Create person-oriented health statistics,
- Generate disease registries & health surveillance systems

Create TB indicators e.g.
% of HIV + clients diagnosed with TB
% of persons screened for TB, who are diagnosed with TB

Introduction
In 1946, H. L. Dunn of the US National Bureau of Statistics introduced the term in this way:
"Each person in the world creates a Book of Life. This Book starts with birth and ends with death. Record linkage is the name of the process of assembling the pages of this Book into a volume" *(Dunn, 1946)*

Introduction
Computerized record linkage was first undertaken by the Canadian geneticist Howard Newcombe and his associates in 1959

Record Linkage Process
5 main phases in linkage
1. Pre-processing
2. Cleaning data
3. Decision-making
4. Selecting matching variables
5. Grouping Blocking or indexing
6. Searching/scoring

Reviewing results manually

Data quality assessment pre-linkage

Essential 1st step

Especially KEY IDENTIFIER FIELDS

Unique Identifiers

Programs should consider the use of a unified unique identifier that combines patient and facility characteristics such as a 17 digit alphanumeric code that makes duplication unlikely and deductive disclosure very difficult.

Facility code(3 digits)+ BMU code(3 digits)+date of birth(8 digits)+years of education (2 digits)

A randomly generated Unique identifier is preferable in cases where stigma is a major issue and people are well known to each other. However, an advantage of a non-computer generated ID is that patients who access multiple health facilities will be assigned the same code if the Unique Identifier is based upon immutable patient characteristics.

Format Key identifiers (unique) to minimize complexity

Data cleaning prior to linking

Pre-requisites

- Removal of commas & punctuation marks, unnecessary blanks, accent marks, invalid values
- Upper/lower case variation
- String vs. numeric variables
- Missing values

Standardization

Many software programs require you to sort your datasets before merging

Review Process

Intuition & intrinsic knowledge of data needed

Access to additional variables not used in search necessary

Do not delete duplicate record, should be marked and kept on file for further re-assessment

Whole process of linkage exercise should be accounted by full documentation

Good software for linking with Unique IDs

- SPSS
- STATA
- MS Access
Reminders for good linking
Data must be unique, but also ordered (sort both file by PIN)

DOUBLE COUNTING

What are the 3 types of double counting?

3 types of double counting
Type I: Within Partner Double Counting of Individuals
Type II: Between Partner Double Counting of Individuals
Type III: Double Counting of Sites

Check for Duplicate Records in Epi-Info 7

Using Frequency, check for duplicate records.
How to:
READ C:"
FREQ TBpatientnumber
Delete Duplicate Records

How To:
READ {C:"
FREQ TBpatientnumber
SELECT TBpatientnumber "118080"
LIST * GRIDTABLE
DELETE UNIQUEKEY = 1 PERMANENT

Can I de-duplify in Excel?
What are the pros and cons of de-duplifying in Excel?
http://www.youtube.com/watch?v=6HNX_tk2VxU

It is not recommended.
Demonstrate the use of the join and concatenate functions in Epi-Info for joining two data sets. Please note that these functions do not work properly yet in the current versions of Epi 7 and so we strongly suggest that the participants practice doing this in EPI-Info version 3.

Handout Exercise 1:

Step 1: Open the TB screening register data and the TB patient register data.

Step 2: Clean and prepare the data for joining in the following ways:

Clean/prepare ScreeningRegister.xlsx

1. Open worksheet in Excel

2. Sort worksheet by Date of TB Screening (oldest to newest)
 a. Delete first record due to invalid and missing data

3. Sort worksheet by Region (largest to smallest)
 a. Re-enter Region in rows two through four

4. Sort worksheet by ScreeningNumber (largest to smallest)
 a. Delete row with ScreeningNumber equal to all 9s, i.e., 9999999999

5. Save cleaned file, as ScreeningRegister-clean.txt (n=17,668)

Step 3: Merge the presumptive TB and TB patient data registers using Excel vlookup or EPI-Info 3, matching by UNIQUE ID.

Discussion points for debriefing:

1. What are the main phases in the data linkage process?
2. How might you handle missing unique identifiers?
Theme 2: Find Problems

Session 10: Theory, Structure, and Process of Data Quality Assessment

Objectives:
1. Describe how change theory can be applied to data quality improvement.
2. List activities within each component of a data management system that help ensure data quality.
3. Describe the main roles and responsibilities for data quality at each level of the health system.
4. Compare and contrast different tools for assessing data quality.

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 min</td>
<td>Overview of change theory</td>
<td>Presentation</td>
<td>Powerpoint</td>
</tr>
<tr>
<td>10 min</td>
<td>Data quality activities within the data management system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 min</td>
<td>Data quality responsibilities by level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 min</td>
<td>Data quality assessment tools</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Homework assignment:
1. Map the levels of responsibility for Data quality in your own TB program or organization.
2. Where and when does data quality get assessed?

Discussion points for debriefing:
1. Choose two factors that influence behavior change at the individual level and discuss how each could be addressed to improve data quality.
2. Describe two key differences between data quality audits and routine data quality assessments.

Multiple choice questions for assessing comprehension:

2. Which component of a data management system would include providing regular feedback to lower levels as a way to improve data quality?
 a. Data management processes
 b. Evidence-based decision making
 c. Data collection and reporting forms/tools
 d. M&E structures, functions, and capabilities
3. Which is not a factor that influences behavior change at the individual level?
 a. Social status
 b. Self-image
 c. Skills
 d. Emotions
 e. Perceived social norms
Session 11: Sampling and Logic Checks of Paper Surveillance Data

Objectives:
1. To learn basic principles of sampling.
2. To practice using a random numbers table.
3. To practice deriving a systematic random sample of TB cases from a paper-based TB register.

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 min</td>
<td>Overview of current practices for assessing the quality of paper register data.</td>
<td>Brainstorm</td>
<td>Flip chart</td>
</tr>
<tr>
<td>30 min</td>
<td>Overview of sampling of paper-based surveillance data.</td>
<td>dialogue</td>
<td>Power point</td>
</tr>
<tr>
<td>30 min</td>
<td>Systematic random sampling exercise for paper data.</td>
<td>Exercise- hands on practice</td>
<td>Paper TB registers</td>
</tr>
</tbody>
</table>

Homework assignment: Consider the following

1. If we scan a TB register and find that over 50% of the TB patients under five are smear positive, what types of data quality issues might be occurring? Describe two approaches you might use to trying to unravel this mystery.
2. If a culture laboratory has a cross-contamination problem in their Bactec MGIT machine, how could we discover it in the laboratory register?
3. What data quality clues might we expect to find in this situation?

Session Notes
Objectives
Share knowledge on our existing practices
Explore the issue of sampling from paper lists

What are your current practices?
What do you do to check data quality on supervision visits?
Short exercise in groups of 3 – 4 questions

What is sampling?
A process by which we study a small part of a population (sample) to make judgments about the entire population

Sampling involves selecting a number of units from a defined population

Definitions
Study population
All the sampling units or individuals which could possibly be included in the sample
Sampling frame
A list of all the available sampling units in the study population
Sampling unit
The item which is sampled
Sampling interval
The proportion of a study population sampled

Representative Sample
A representative sample has all the important characteristics of the study population from which it is drawn

Example:

<table>
<thead>
<tr>
<th>Population</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% Male</td>
<td>50% Male</td>
</tr>
<tr>
<td>50% Female</td>
<td>50% Female</td>
</tr>
</tbody>
</table>

Random Sampling Strategies
Simple random sampling
Systematic sampling
Stratified sampling
Cluster sampling
Multistage Sampling

1. **Simple random sampling**

 Used in situations where the number of sampling units is relatively small
 Determine units available for sampling: i.e. Study population of 100 individuals
 Decide on sample size: i.e. Sample 10 individuals
 Lottery method (random number table, computer program

Advantages and Disadvantages

Advantages

- Easy to understand
- Easy to analyze

Disadvantages

- Requires a list of the population
- Cost may be prohibitive

May miss or undersample key subsets

2. **Systematic sampling**

 Individuals are chosen at regular intervals.
 Determine units available for sampling: i.e. Study population of 100 individuals
 Decide on sample size: i.e. Sample 25 individuals
 Calculate sampling interval 100/25=4
 Start at random student between 1 and 4, i.e. 2.

Advantages and Disadvantages

Advantages
Less time consuming than simple random sampling
Easy to perform

Disadvantages
Risk of bias (i.e. sampling days of the week with sampling interval of 7 – will always select Tuesday which may be a market day).

Discussion
If the data are low quality, do we need a big sample or a little sample to measure the % of incomplete records?

Why?

Sampling practice with paper TB register
Draw 5 10% samples
Draw 5 20% sample
Compare
Thank you

Acknowledgements: Eveline Klinkenberg

Discussion points for debriefing:

1. If the data are very low quality, what kind of sample size would be needed and why?
2. What are some of the potential risks with systematic random sampling? When would it be a mistake to use it?

Multiple choice questions to assess comprehension:

1. If the TB data are very low quality, what size sample is needed to measure the proportion of incomplete data?
 a. a very big sample
 b. a very small sample
 c. it cannot be measured by sampling

2. If all the data are in a chronological list on paper, what sampling methods might be easy to use?
 a. Sampling proportional to size
 b. Lot quality assurance sampling
 c. Systematic random sampling
Systematic Random Sampling (SRS) Exercise
Sampling with Paper-Based TB Data Team Handout

Materials Needed:
1. Sets of paper TB registers, each containing about 100 TB patients.
2. Handout (see below).
3. Random numbers table.

Systematic Random Sampling Exercise
Sampling with paper-based TB data Team Handout

Individual TB patients have two types of entries: complete and incomplete

Without counting, but just scanning quickly, guess the proportion of complete entries in Ellenville:

Complete ______%
Incomplete ________%

1. If each M&E Officer takes a sample of six TB patients from 60 TB patients (10%), would you expect every person to have the number of complete entries in their sample? Explain.

2. Randomly select five systematic random samples of six TB patients (10%). Write down the number of each color for these 5 samples:

Five 10% Samples of the Ellenville TB Register data

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Number complete</th>
<th>Percent complete</th>
<th>Number incomplete</th>
<th>Percent incomplete</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These numbers represent the variability you would expect to see.
3. Now draw five systematic random 20% samples of 12 patients, and put your results in the table below:

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Number complete records</th>
<th>Percent complete records</th>
<th>Number incomplete records</th>
<th>Percent incomplete records</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How does the size of the sample affect the certainty of the data?

Discussion: The proportions are the sample statistics. For example, the proportion of complete records in your sample is the statistic that summarizes your sample.

1. How does this relate to the population parameter (the TRUE proportion of complete records in the register)?
2. Do you know the value of the Parameter when you start? Could you know the true value, i.e., the real number of incomplete records?
3. Do you know the values of the statistics?
4. Does the value of the parameter change each time you take a sample?
5. Does the value of the statistic change each time you take a sample?
6. Did all of the participants have the same proportion of complete records?
7. How do the actual sample values compare to the ones you estimated earlier?
Session 12: Exploring the Quality of Your Electronic TB Data

Objectives:
1. To grasp various means to detect (possible) errors.
2. To discover outliers and spurious values visually and quantitatively.
3. To learn best practices for finding errors.
4. To compare double entered data for errors in Epi-Data 3.0 and Excel.
5. To use Epi-Info to identify aberrations in the data.

Pre-requisites(s): Session 2 on assuring data quality prospectively and Session 11 on logic checks.

Background Preparation to be completed before the session:
1. Understanding and Using Tuberculosis Data. WHO 2014 Chapter 2 Analysis of case-based TB notification data
2. How to use Epi-Info Compare Utility v. 3.4.3 (**NOTE for OLD VERSION OF EPI_INFO new Epi-info 7 has no way to check double entered data yet.**) http://www.youtube.com/watch?v=24gBswHdZ8U
3. 2:36 min How to import Excel files into Epi_Info 7: http://www.youtube.com/watch?v=CgRCBord-YA

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 min</td>
<td>Exploring quality of electronic data</td>
<td>Guided discussion</td>
<td>Power point</td>
</tr>
</tbody>
</table>
| 15 min | • Aberration detection for aggregated data
• Aberration detection for individual data | Audiovisual stimulus | EPI-Info 7 videos |
| 20 min | Demonstration of Epi-Data compare utility | demonstration | Two nearly identical data sets |
| 30 min | Practice with comparing double entered data for errors | Hands on practice | Two nearly identical datasets |

Homework assignment: Watch 2 videos to review key points:
1. 8:17 Epi Info 7 Aberration Detection with visit level data http://www.youtube.com/watch?v=kmCtyX50lcU
2. 3:10 Epi Info 7 Aberration detection analysis with aggregated data http://www.youtube.com/watch?v=kmCtyX50lcU
Session Notes
Data checking and cleaning

Check data
Detect (possible) errors
Validate
Correct errors
The whole process takes a lot of time!

Detection of errors

Every dataset contains errors
The goal is to find them and correct them
This improves the validity of your data and therefore of your results

Step 1: compare data entry files

Check for and correct typing errors

Compare data entry files

Comparison of values for all variables
If difference between the two files, find out the true value
Go back to the questionnaire
Give one of the original data entry files a new name and make all the corrections in this file
Document all the changes you make!
Which value is the true value and why

Missing values

Try to avoid missing values
10% missing values for height and 10% missing values for length gives 10-20% missing values for body mass index
Problem for multiple analysis with many variables: 10 variables with all 3% missing values gives up to 30% missing values for one of the variables and will not be used in the analysis
However, do not guess the value if you are not sure!

Example double data check in EpiData

Use
Document -- Validate duplicate files
or
Tools -- Prepare double entry verification

Example double data check in EpiData

Example double data check in Epi Info 3.02 (old version only)
Use
Utilities -- Data compare
File -- New script
Use the wizard to compare files

Example double data check in Epi Info

Example double data check in Excel

=IF (logical test, 'value if true', 'value if false')
=IF (Sheet1!A2-Sheet2!A2=0, 0, 1)

Example double data check in Excel

Step 2: descriptive statistics

Check for and correct errors in raw data (e.g. questionnaires)
Get a ‘feel’ for the data

Descriptive statistics

Single variables
Frequency tables
Histograms
Two variables
Cross-tabulation for discrete variables
Scatter plots for longitudinal variables
New variables
Compare values of old and new variable to make sure your new variable is correct

Frequency tables

List of all unique values, including missing values
Check:
Lowest and highest values
Unlikely values
Missing values
Distribution of values: Likely? Peaks?
Duplicate entry of study subjects

Frequency tables

Lowest and highest values
Out of normal range?
Within inclusion criteria?
Unlikely values
Negative values
Character instead of numeric values
‘O’ instead of ‘0’
Comma instead of point in figure or the other way around
Incorrect dates
Small vs. capital letters
Missing values
All coded in the same way?
Blank, 9, 99 or 999
Duplicate entry of study subjects?
Same ID number, or same date of birth, sex, and city

Cross-tabulation checks

Some errors will appear only when looking at two variables at the same time
For example:
Man who is pregnant
Woman of 60 years old who is pregnant
Length of 1.90 metres and weight of 40 kilo’s

Frequency table

Cross-tabulation

Scatter plot

New variables

Always check
Number of observations
Number of missing values
Consistency old and new value
A new variable usually has at least the number of missing values of (one of the) old variable(s)
Example: Age from ‘date of birth’ and ‘date of diagnosis’
List the three variables next to each other
No negative values?
How have the missing values been converted?
Age in age groups
List age in years and age group

Other possible errors

Case not according to inclusion criteria
E.g. too young, specific co-morbidity, ...
Duplicate cases
Is OK in some studies
When putting together several files, the matching criteria for the same person incorrectly do not match
Variable coded as character instead of numeric

Correction of errors

Check the raw data (e.g. besides the questionnaire there may be the notification record)
Again, make a new file based on your final data-entry file (and save all the old files)
Again, if you are not sure about the true value, make it ‘missing’
Again, record all the changes you make

Discussion points for debriefing:

1. Which techniques are good for the preliminary exploration of your data? Why?
2. Under what conditions would fast aberration detection be important?
3. What are the relative strength of Epi-Info 3 versus Epi-Data 3 for comparing double entered data?

Multiple choice questions to assess comprehension:

1. What are exploratory frequencies good for?
 a. To calculate the error rate
 b. To look for missing data
 c. To do multiple imputation
 d. To do double data entry

2. What are exploratory cross tabulations (2x2 tables) good for?
 a. To derive standard deviations
 b. To do logic checks
 c. To calculate the means
 d. To apply weights
Session 13: Introduction to Routine Data Quality Assessment

Objectives:
1. Describe the RDQA process.
2. Describe how to prepare for and conduct an RDQA.
3. Introduce an RDQA Tool.

Pre-requisites: Session on theory, structure, and process of data quality audits.

Background Preparation to be completed before the session:
1. Manual on use of routine data quality assessment (RDQA) tool for TB monitoring, WHO.
2. MEASURE Evaluation RDQA tool.

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 min</td>
<td>Overview of the RDQA process</td>
<td>Presentation</td>
<td>Powerpoint</td>
</tr>
<tr>
<td>12 min</td>
<td>Preparing for and conducting an RDQA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 min</td>
<td>Overview of the MEASURE Evaluation RDQA tool</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Homework Assignment: None

Session Notes
Topics to be covered

RDQA process
Preparing for an RDQA
Conducting an RDQA
Overview of the MEASURE Evaluation RDQA tool

Purpose of RDQA

RDQA Implementation Steps

Site Selection

Not necessary to visit all reporting sites to determine the quality of data
If RDQA is part of on-going monitoring
Select sites in parallel with existing supervision visit schedule
If targeting issues (delays in reporting, incomplete reports, questionable data, etc.)
Select sample of problematic sites
Select sample of high functioning sites
If preparing for an audit
Select a representative group using random sampling techniques

RDQA Team

RDQA Team Leader’s Responsibilities

RDQA Team Member’s Responsibilities

At the Beginning of Each Visit

Conducting the RDQA

Conducting Site Visits

Start verifications at the highest level being evaluated
Complete relevant sections of RDQA tool through interviews & document review

Complete Tool During Visits

Provide a brief overview of the tool
Facilitate a discussion based on the questions in the RDQA tool
Where staff say they have documentation available, ask to see a copy of the documentation at the end of the discussion

Debrief at Assessment Site

Debriefs are provided to each reporting level so that
Staff can see and understand the results of the assessment at their office, i.e. the strengths and weaknesses of their M&E system
Staff have an opportunity to ask questions, correct any errors/misunderstandings, and provide additional clarification on the findings
Team can update the answers in the tool with any corrections or qualifying information
Help the staff generate an action plan appropriate to their site

Debrief Outline

Present findings to the site staff
Highlight and praise all areas of strength, i.e. don’t just focus on weaknesses
Discuss each weakness and ask staff to comment on the findings
Develop action items with staff input
End on a positive note

RDQA Feedback by Level

Objectives of the MEASURE Evaluation RDQA Tool
Overview of the RDQA Tool

3 versions
Single indicator
Multiple indicators – up to 4
Longitudinal - single indicator over 4 reporting periods
May be implemented at up to 4 levels
Service Delivery Sites
Health Districts
Intermediate/Aggregate levels
National M&E

Attributes of the RDQA Tool

Components of the RDQA Tool

Part 1 – Data Verifications

Purpose
Assess if sites are collecting and reporting data to measure the selected indicator(s) accurately and on time
Cross-check the reported results with other data sources (service delivery level only)

Data Verification – Health Centre

Data Verification – Higher Levels

Part II—System Assessment

Purpose
Identify potential threats to data quality from the data management and reporting system due to
how it is designed
how it is implemented

Conducting a System Assessment

Apply the system assessment questionnaire in a participatory manner with all relevant M&E staff present
Discuss answers thoroughly
Take detailed notes to ensure a comprehensive understanding of the responses

RDQA Timeline for Monitoring

Discussion points for debriefing:
1. Under what circumstances is an RDQA appropriate to use?
2. Discuss considerations when selecting sites for an RDQA.

Multiple choice questions to assess comprehension.

1. In general, how long should you allow per site for an RDQA?
 a. 2-4 hours
 b. ½ -1 day
 c. 1-1½ days
 d. 1-2 days

2. Which is not part of the RDQA implementation process?
 a. Interpret results
 b. Indicator selection
 c. M&E framework development
 d. Action plan development
 e. Site selection
Session 14: Practice Session with Audit Case Study

1. **Objectives:** Practice data verifications using the RDQA tool.

Pre-requisites: Introduction to RDQA

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 min</td>
<td>Skills practice in RDQA using TB patient dataset from fictional Island country of Maravilha</td>
<td>Hands on use of Part I- Data Verifications</td>
<td>Paperdatset-district.docx [SummaryRept] RDQA_Tool_TB.xls</td>
</tr>
</tbody>
</table>

Homework assignment: none

Discussion points for debriefing:

1. Under what circumstances is an RDQA appropriate to use?
2. Discuss considerations when selecting sites for an RDQA.
Session 15: Use of WHO Checklist of Standards and Benchmarks for TB Surveillance and Vital Registration Systems

Objectives:
1. To gain a broad understanding of the WHO standards and benchmarks.
2. To explore in groups (two countries/groups) the feasibility and challenges of implementing the standards and benchmarks in the learners’ countries.

Background Preparation to be completed before the session:

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 mins</td>
<td>Overview of standards and benchmarks</td>
<td>didactic lecture</td>
<td>Power point</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 40 min | • Each country-group will discuss the methodology and how it would be applied.

• Participants review the checklist to determine how to assess the system. | Group exercise aimed to apply the material to their actual context | Checklist and discussion questions |

Homework assignment: None

Session Notes:

Task Force strategic areas of work
Surveys of the prevalence of TB disease
Methods to estimate disease burden
Strengthening routine surveillance
The goal: direct measurement of TB cases & death from notification & vital registration data
TB notifications in surveillance system ~ TB incidence
TB deaths in vital registration system ~ TB mortality

Why strengthen surveillance?
Estimates of disease burden are currently highly reliant on expert opinion
Two main reasons why this is the case
TB cases are diagnosed but not reported
TB cases are not diagnosed
Vital registration data not frequently utilized by National TB Programs
No systematic method for assessing data quality and coverage prior to 2010
Standards and benchmarks (S&Bs): Definitions

Standards: general statements about the characteristics that define a high-performance TB surveillance system
Benchmarks: define in quantitative terms wherever possible the level of performance that is considered good enough to meet the standard

Standards and benchmarks for TB surveillance: Purpose

Assess a surveillance system’s ability to accurately measure TB cases and deaths in all settings in a standardized way
Use surveillance data for direct measurement
Identify and better quantify shortcomings in surveillance systems that need to be addressed

Standards and benchmarks for TB surveillance: Purpose

Inform TB program staff, policy-makers & partners about aspects of surveillance systems that need to be strengthened to improve TB control
Develop a M & E investment plan to address identified gaps in surveillance

Development of the standards and benchmarks for TB surveillance

Underlying principles

Built on experience of regional workshops (2010 – 2011)
TB epidemiology
Evidence-based (WHO data and literature)
High performing systems used as models
Aimed for a minimum set of standards
Applicable across different geographic areas (high & low burden settings) & systems (electronic & paper-based)
Involved partners from national programs & technical agencies

Lessons learned- Pilot Testing

Perceived to be useful and feasible
Some parts needed to be removed or changed
Can be done in about ~ 1 week, except for cross checking of source documents (paper-based)
Users required some epidemiology background to conduct assessment
Lessons learned - Pilot Testing

Some challenges to identifying S & B that are appropriate for all systems and settings
1 standard different for electronic and paper-based
Evidence from previous studies may be used for some standards, e.g.
B1.4 - requiring cross checking of source documents
B1.8 - assessing under-reporting
User guide needed

Implementation of standards & benchmarks

Methods

Standards & benchmarks for TB surveillance: Intended use

Designed to allow a national assessment for most recent complete calendar year
Lag time may range from no delay to one year
An assessment of a TB surveillance system using this checklist would take place at least
every 3-5 years (or more often, if feasible)

Standards & benchmarks for TB surveillance: Intended use

Checklist can be used by in-country staff for self-assessment or by external reviewers,
e.g.
Global Fund
National Program Reviews

Standards & benchmarks for TB surveillance: Method used

Desk review of documents, datasets, and electronic surveillance systems
Data quality audits

Standards & benchmarks for TB surveillance: Requirements

Description of the TB surveillance system
Data sources
Surveillance data for analyses
Program documents, manuals, SOPs
Facility & district level source documents
Previous studies (e.g. TB, HIV, DRTB surveys, inventory & mortality studies)
Data external to the program
Standards & benchmarks for TB surveillance: Requirements

Personnel
National, district and facility levels
M&E officers, data managers, lab staff, epidemiologists, statistician, TB program officers
Vital registration & HIV staff

Standards & benchmarks for TB surveillance: Interpretation

For a country's TB surveillance system to be certified as providing a direct measurement of TB cases:
10 standards need to be met
1 is specific to paper-based systems
1 is specific to electronic case-based systems
2 assess system coverage

Standards & benchmarks for TB surveillance: Interpretation

For a country's TB surveillance system to be certified as providing a direct measure of the # of DR-TB, TB/HIV, and TB cases in children specifically, 3 additional standards must be met
For surveillance system to provide a direct measure of TB deaths there is 1 standard that must be met

Overview of the standards and benchmarks for TB surveillance: A checklist

Standards and benchmarks for TB surveillance: Overview

Checklist includes standards and benchmarks related to data quality, system coverage, TB mortality data, drug resistant TB (DRTB) surveillance, TB/HIV & TB cases in children
Checklist consists of a set of 13 standards & associated benchmarks
9 standards: related to TB cases measurement
1 standard: related to TB deaths measurement

Standards and benchmarks for TB surveillance: Data Quality
Standards and benchmarks for TB surveillance: Data Quality

Standards and benchmarks for TB surveillance: Data Quality

Standards and benchmarks for TB surveillance: Coverage

Standards and benchmarks for TB surveillance: Vital Registration

Standards and benchmarks for TB surveillance: DR TB, TB/HIV & children

Standards and benchmarks for TB surveillance: DR TB, TB/HIV & children

What have we learned so far in rolling out the TB surveillance checklist?

Common findings from roll-out of TB surveillance checklist

Sub-optimal or unknown data quality at facility and district levels, based on available information, but difficult to assess
Need to conduct national level data quality audits
Electronic recording and reporting systems needed
Limited use and analysis of TB surveillance data
Guidance (TB surveillance analysis handbook) is being developed

Common findings from roll-out of TB surveillance checklist

Limited understanding of level of underreporting of TB
Inventory studies can be used to measure unreported cases
Poor measurement of TB mortality
Need to strengthen vital registration systems and coding of causes of death

Importance of linkages with other initiatives and closely related efforts
Supports Global Fund approach to strengthening impact measurement
Uses the Service Availability and Readiness Assessment (SARA) tool to systematically assess data quality nationally
Tracks progress in health systems strengthening

Importance of linkages with other initiatives and closely related efforts

Feeds into workshops by the Commission on Information and Accountability for Women’s and Children’s Health (COIA)
Developing country roadmaps for health systems strengthening

Acknowledgements

Emily Bloss, PhD; Division of Tuberculosis Elimination Centers for Disease Control and Prevention
Contributors to the development of the standards and benchmarks checklist and/or user guide: Members of the Task Force
Countries contributing to the work around standards and benchmarks: Brazil, China, Côte d’Ivoire, Egypt, Estonia, Ghana, Indonesia, Japan, Kenya, Netherlands, Nigeria, Thailand, Uganda, UK, USA, Viet Nam

Discussion points for debriefing:

1. Which of the benchmarks do you think are the least likely to be measurable and why?
2. What other methods might you try in order to capture the mortality information?

Multiple choice questions to assess comprehension:

1. Standards and benchmarks focus on strengthening various aspects of a country’s TB routine surveillance system. What other aspects does it focus on?
 b. Standards define wherever possible in qualitative terms performance levels that is good enough to meet the standard.
 c. All the above.
 d. None of the above.

 True/False: The checklist consists of a set of 13 standards and associated benchmarks, nine standards related to TB cases measurement and one standard related to TB deaths measurement.

2. Lab-confirmed cases vs. clinically diagnosed cases is an example of:
 a. Standard
 b. Benchmark
 c. Both
d. None of the above
Session 16: M&E of TB Mortality

Objectives:
1. To discuss the M&E implications of the new Post-2015 Stop TB targets.
2. To discuss the limitations and challenges of mortality measurement including inadequacy of verbal autopsy and civil registries.
3. To describe a participatory approach for assessing the root causes of high mortality in specific facilities or communities.

Background Preparation to be completed before the session:

1. STOP TB partnership Post-2015 Targets.
3. The Lessons from Loss Tool: www.tbcare1.org/access

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 min</td>
<td>Discussion of mortality projections and new Post-2015 Stop TB targets</td>
<td>Presentation</td>
<td>Power point</td>
</tr>
<tr>
<td>30 min</td>
<td>Review of the lessons from Loss tool</td>
<td>Presentation</td>
<td>The Lessons from Loss Tool</td>
</tr>
</tbody>
</table>

Homework Assignment: None

Session Notes

Objectives of this session
To explore the new STOP TB targets
To discuss potential approaches to measurement
To describe a new tool for mortality audits– the Lessons from Loss tool

Post-2015 tuberculosis strategy

The vision for the post-2015 tuberculosis strategy is “A world free of tuberculosis”, also expressed as:
“Zero deaths, disease or suffering due to tuberculosis”

The goal is to end the global tuberculosis epidemic

The global TB targets for 2035 is:

a 95% decline in the deaths due to tuberculosis, compared with 2015,
2025 Mortality Milestone

A key milestone is a **75% reduction in tuberculosis deaths by 2025**, compared with 2015.

This requires two things. First, the annual rate of decline in global tuberculosis incidence rates must accelerate from an average of 2% per year in 2015 to 10% per year by 2025. Second, the proportion of incident cases dying from tuberculosis (the case fatality ratio) needs to decline from a projected **15%** in 2015 to **6.5%** by 2025.

Which means: countries need a TB mortality baseline value by 2015

This is not just deaths in the treatment cohort, **but also deaths of people with TB who were never diagnosed**

Mortality: Notification Ratio

M:N is a proposed indicator

Once we find out # of TB deaths, we see how many of them were diagnosed and entered in the surveillance system.

ICD-10 Mortality Measurement

According to the latest revision of the inter-national classification of diseases (ICD-10), TB mortality is the number of deaths caused by TB in HIV-negative people. **TB deaths** among HIV-positive people are classified as **HIV deaths** in ICD-10.

For this reason, estimates of deaths caused by TB in HIV-positive people are presented separately from those in HIV-negative people

How can these baseline rates be obtained?

The two approaches promoted globally to measure the TB mortality will be:

- Health and demographic surveillance system (HDSS) conducted on sentinel populations;
- Sample vital registration with verbal autopsy (SAVVY) conducted on statistically sampled population clusters representative of the whole population.

Both of these approaches use verbal autopsy (VA) to determine cause of death

What is Verbal Autopsy?
Does it work for TB? No.
Verbal Autopsy for TB

Definition: A verbal autopsy is an interview of relatives or caregivers regarding:

- the signs,
- symptoms,
- behaviors and
- other circumstances experienced by the deceased before their death

What might be some problems with human coders using ICD-10?
What might be some problems with a computer algorithm?
Verbal autopsy (VA) may not work and Necropsy is not popular or feasible

Without a pathognomonic sign for TB it is hard to use an algorithm-based VA
In many settings family members refuse necropsy at rates > 70% and there is no capacity to do this worldwide.

Minimally invasive autopsy techniques are being tested and may be a good option for pulmonary TB in the future.

Sample Vital Registration will be promoted continent-wide

Draft of the STOP TB Strategy post-2015
“An interim solution being adopted by an increasing number of countries is the introduction of a sample Vital Registration system. In the coming decade, the biggest challenge will be the expansion of Vital Registration systems in African countries. “
WHO Civil Registry 2013 Resource Kit already promoting InterVA as better than coders

“One approach – InterVA – is now in widespread use in HDSS sites... ...new automated techniques that perform even better than physicians..”

Validity Problems with Verbal Autopsy

We know that verbal autopsy does not work well for children with TB and we suspect it does not distinguish adult TB deaths well either.

Discussion

What are the possible alternatives?
Piloting TB Patient Mortality Audits using a Patient-Centered Approach
BY MOH Ethiopia & TB CARE I Ethiopia
2013

Purposes of TB Mortality Audit...
Both health care and community workers and family members should be assured that the sole purpose of the audit is to learn valuable lessons from the tragic death of the patients and to save lives in the future. These reviews seek only to identify barriers to accessing and receiving quality care in the health care system. They must never be used to provide the basis for litigation, management sanctions or personnel decisions.

Pinpoint the Missteps on the TB journey

Methods of TB Mortality Audit

Definitions, advantages and disadvantages of audit methods to facilitate decision making.

Part A: Community-based Death Review (CBDR)
Definition: A method of ascertaining the personal, familial, community, and quality of care factors that may have contributed to the deaths.

Part B: Facility-Based Mortality Audit (FBMA)
Definition: An in-depth investigation of care provided

Discussion points for debriefing:

1. What are the limitations of verbal autopsy for TB?
2. What are some possible alternatives to verbal autopsy? Why would these work?

Multiple choice questions for assessing comprehension:

2. How does the current system of death classification bias the measurement of TB mortality?
 a. People who die of HIV are always classified as TB.
 b. People who have TB and HIV are always classified as having died from HIV.
 c. People who have any cough are always classified as pneumonia deaths.
3. A key milestone in the 2015 strategy is a 75% reduction in tuberculosis deaths by 2025. What would this require?
 a. The annual rate of decline in global tuberculosis incidence rates must accelerate from an average of 2% per year in 2015 to 10% per year.
 b. The proportion of incident cases dying from tuberculosis (the case fatality ratio) needs to decline from a projected 15% in 2015 to 6.5% by 2025.
 c. A lot of money is needed.
 d. All of the above.
Theme 3: New Challenges in TB M&E

Session 17: Revised WHO Case Definitions and Reporting Forms for 2013

Objectives:
1. Define the key changes in the TB definitions released by WHO in 2013.
2. Explain WHO-recommended changes to reporting forms.
3. Analyze the implications of adopting the revised definitions and forms at country level for the NTP.

Background Preparation to be completed before the session:

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 min</td>
<td>Summarize key changes to TB definitions (focus on the changes as opposed to reviewing every definition).</td>
<td>Presentation/discussion</td>
<td>PowerPoint presentation</td>
</tr>
<tr>
<td>10 min</td>
<td>Introduce WHO sample forms that incorporate the new definitions (TB/HIV and PMDT-related forms will not be discussed in this session).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 min</td>
<td>What do these changes mean for my country? (Countries share experiences with updating forms, discuss steps for adopting new definitions/forms, and examine how their results may be affected by the changes).</td>
<td>Group discussion</td>
<td></td>
</tr>
</tbody>
</table>

Homework assignment:
Review this website: Questions and answers: the 2013 revision of the WHO definitions and reporting framework for tuberculosis
http://www.who.int/tb/publications/definitions_faq/en/
Please read *Definitions and reporting framework for tuberculosis – 2013 revision* (WHO): (www.who.int/iris/bitstream/10665/79199/1/9789241505345_eng.pdf)

Session Notes

Objectives

Outline the main changes in the 2013 document:

1) Definitions: Basic TB & rifampicin-resistant TB (RR-TB)
2) Reporting framework: Basic TB & RR-TB

What do the changes mean for our NTPs?

Revision process

Collaborative work of World Health Organization (WHO) staff at different levels, technical partners and national staff.

May 2011: expert consultation in Geneva, Switzerland.

June 2011: WHO’s Strategic and Technical Advisory Group on TB (STAG-TB)

July 2011: presentations and discussions with WHO regional and country staff, Geneva, and subsequent further consultation with WHO staff.

October 2011: meeting of the DOTS Expansion Working Group, Lille, France.

E-mail consultation with a wide range of countries and technical partners between November 2011 and March 2013.

Seven countries (Belarus, Brazil, Cambodia, Djibouti, Estonia, Pakistan, Philippines) pilot the definitions and forms in 2012 and provide feedback

Definitions

Bacteriological confirmation needs to consider results from new WHO-approved rapid diagnostics (WRD), including Xpert MTB/RIF;

Differentiate b/w rifampicin-resistant TB (RR-TB) and confirmed MDR-TB cases;

Simplification of definitions of ‘Cured’ and ‘Treatment Failed’ in RR-TB cohorts to allow for their application while patient is still on treatment;

Less judgmental language: ‘Defaulter’ replaced by ‘Lost to follow-up’ and ‘TB suspect’ by ‘Presumptive TB’

- Classification based on anatomical site of disease
- Classification based on history of previous TB treatment (patient registration group)
- Classification based on HIV status
- Classification based on drug resistance
- Treatment outcome definitions
- Treatment outcomes for TB patients (excluding patients treated for RR-TB or MDR-TB)
- Outcomes for RR-TB/MDR-TB/XDR-TB patients treated using second-line treatment

Presumptive TB:

A patient who presents with symptoms or signs suggestive of TB *(previously TB suspect)*

TB case:

A bacteriologically confirmed TB case: a biological specimen is positive by smear microscopy, culture or WRD. All such cases should be notified, regardless of whether TB treatment has started *(previously Definite TB case; now includes explicit mention of WRD)*

A clinically diagnosed TB case: not bacteriologically confirmed but diagnosed with active TB by a clinician or other medical practitioner who has decided to give the patient a full course of TB treatment *(previously a case of TB, not considered Definite)*

Pulmonary tuberculosis (PTB): *specific mention of tracheobronchial tree*

Extrapulmonary tuberculosis (EPTB)

Focus is now on previous treatment history, independent of bacteriological confirmation or site of disease *(NB: for RR-TB these groups are different)*.

New: never been treated for TB or have taken anti-TB drugs for less than 1 month

Previously treated: have received 1 month or more of anti-TB drugs in the past *(changes for sub-category definitions)*

- Relapse
- Treatment after failure
- Treatment after loss to follow-up
- Other previously treated
- Patients with unknown previous treatment history *(new group)*

Relapse: previously treated for TB, were declared cured or treatment completed at the end of their most recent course of treatment, and are now diagnosed with a recurrent episode of TB (either a true relapse or a new episode of TB caused by reinfection); *(rewritten & removed mention of bacteriological positive TB)*

Treatment after failure: *(rewritten, but similar meaning as before)*
Treatment after loss to follow-up: (previously known as ‘treatment after default’)

Other previously treated: (cases with unknown previous TB treatment history classified separately)

HIV-positive TB patient: any TB case who has a positive result from HIV testing conducted at the time of TB diagnosis or other documented evidence of enrolment in HIV care¹, such as enrolment in the pre-ART register or in the ART register once ART has been started.

HIV-negative TB patient: any TB case who has a negative result from HIV testing conducted at the time of TB diagnosis. (not previously defined)

HIV status unknown TB patient: any TB case who has no result of HIV testing and no other documented evidence of enrolment in HIV care¹.

Main change: inclusion of rifampicin-resistant TB (RR-TB). RR-TB includes any resistance to rifampicin, whether mono-resistance, multidrug resistance, poly-drug resistance or extensive drug resistance.

Category is not mutually exclusive with the others.

Rifampicin resistance: resistance to rifampicin detected using phenotypic or genotypic methods, with or without resistance to other anti-TB drugs. (new definition)

- Mono-resistance
- Poly-drug resistance
- Multi-drug resistance
- Extensive drug resistance

Classification based on drug resistance (3)

NOTE: Mono-resistance and poly-drug resistance are usually applied to first-line drugs only (R, H, E and S). Future drug regimens may make it important to classify patients by their strain resistance patterns to fluoroquinolones, second-line injectable agents and any other drug for which reliable DST becomes available.

Two sets of definitions for two, mutually-exclusive treatment outcome cohorts:

Outcomes for TB patients, excluding patients treated for RR-TB ("Basic TB")

Outcomes for RR-TB/MDR-TB/XDR-TB patients treated using second-line treatment ("RR-TB")

The first group ("Basic TB") may include cases who have drug-susceptible TB, or other forms of mono-resistance (e.g., INH-resistance) not requiring a full second-line
regimen for MDR-TB. Outcomes are assigned to all bacteriologically confirmed and clinically diagnosed TB cases including those who die or who are lost to follow-up before starting treatment. The second group ("RR-TB") includes all RR-TB, MDR-TB and XDR-TB cases, confirmed or presumptive, started on combination second-line regimen for MDR-TB as per the local policy. Outcomes are assigned to all.

For treatment outcome monitoring, only laboratory confirmed RR-TB (+ MDR-TB/XDR-TB) are enumerated.

1. Cured (only pulmonary; initial bacteriological confirmation may be based on WRD)
2. Treatment failed (no longer includes systematically any case with confirmed MDR-TB)
3. Lost to follow-up (previously ‘Default’)
4. Not evaluated (now includes previous ‘Transfer out’ category)
5. Treatment completed
6. Died

Treatment success

Treatment failed: a case confirmed to be MDR-TB is no longer automatically assigned this outcome. If the patient is started on a combination second-line regimen for MDR-TB the case is excluded from the “Basic TB” cohort when calculating treatment outcomes and transferred to the “RR-TB cohort”. If treatment with a combination second-line regimen for MDR-TB is not possible, the patient is kept in the “Basic TB” cohort and assigned an outcome from among those on the previous page.

1. Cured
2. Treatment completed
3. Treatment failed
4. Died
5. Lost to follow-up
6. Not evaluated
 • Treatment success

Old definition of Cured
(Cat IV)

Cured: (negative cultures counted after the intensive phase no longer limited to last 12 months of treatment)

Treatment completed: (changes only insofar as applied to ‘Cured’)

130
Old definition of Failed
(Cat IV)

Definition now determined primarily by changes required to the regimen as a result of non response as determined by lack of conversion, reversion, amplification or ADRs.

Treatment failed: Treatment terminated or need for permanent regimen change of at least two anti-TB drugs because of:
- lack of conversion by the end of the intensive phase, or
- bacteriological reversion in the continuation phase after conversion to negative, or
- evidence of additional acquired resistance to fluoroquinolones or second-line injectable drugs, or
- adverse drug reactions (ADRs)

Lack of conversion by the end of the maximum intensive phase used by the program.
If no maximum duration is defined, an 8-month cut-off is proposed.
If regimens do not have a clear distinction between intensive and continuation phases, a cut-off 8 months after the start of treatment is suggested to determine when the criteria for Cured, Treatment completed and Treatment failed start to apply.
Reversion (to positive): after an initial conversion, 2 consecutive cultures, at least 30 days apart, are positive. For Treatment failed, reversion considered only when it occurs in the continuation phase.

Revised Recording & Reporting Forms

Inclusion of TB cases detected using WRD as well as RR-TB cases
Combining outcome reporting for drug-sensitive and RR-TB for countries where PMDT is incorporated (“mainstreamed”) in the NTP
Childhood TB reporting was incomplete because age disaggregation was previously limited to sputum smear-positive TB, which is uncommon in children
There was a delay of 2 years in the reporting of cotrimoxazole preventive therapy (CPT) and antiretroviral therapy (ART) in TB/HIV because these data were collected only in the treatment outcome reports and not in the case registration reports

Revised forms in document

1. Request for examination of biological specimen for TB
2. Basic management unit TB register
3. Second-line TB treatment register
4. Laboratory register for smear microscopy and Xpert MTB/RIF
5. Laboratory register for culture, Xpert MTB/RIF and drug susceptibility testing (DST)
6. Quarterly report on TB case registration in the basic management unit
7. Quarterly report on TB treatment outcomes in the basic management unit
8. Combined annual outcomes report for basic TB and for RR-/MDR-TB

Tools for patient management not included;

1. Forms for human resource or management of consumables not covered in this document;
2. Forms for community-based management of TB
3. Registers for persons with presumptive TB

Revised forms and reports for RR-TB will be discussed in greater detail in the forthcoming “Companion handbook to the 2011 WHO guidelines for the programmatic management of drug-resistant tuberculosis”.

The register is intended to record all patients diagnosed with TB and eligible for TB treatment, including those diagnosed with RR-TB or MDR-TB, regardless of whether treatment was actually started. This is different from the previous advice to include only cases starting treatment.

Bacteriological examination before the start of treatment (“month 0”) now allows for results from Xpert MTB/RIF test. Record if the case is RR-TB or MDR-TB, replacing X-ray result.

Dates for HIV testing and start of ART/CPT removed from register.

Change in treatment categories

The terms 'Lost to follow-up' and 'presumptive TB' are less judgmental towards the patient than previous terminology.

A patient can be considered RR-TB and XDR-TB at the same time.

HIV-positive status can only be counted if the test is done at the time of TB diagnosis.

There are 2 mutually exclusive treatment cohorts – 'Basic TB' and 'RR-TB'.

MDR-TB patients must always be moved to the 'RR-TB' cohort.

The BMU register (i.e. District TB register) records all patients diagnosed with TB and eligible for TB treatment, regardless of whether treatment was actually started.

'Category IV' treatment has been replaced by 'second-line treatment regimen';

Forms should be used only as WHO has designed them (no changes possible).

What does this mean for our countries?

DISCUSSION

- How do you think the changes in definitions and reporting framework will affect your data?
- Which indicators do you think you’ll have better data for? Worse?
- Which indicators will be impacted the most?

POTENTIAL RESPONSES
• Increase in HIV results (HIV+ and known status)
• Data on ART/CPT available more quickly (quality still an issue?)
• Including all diagnosed patients (regardless of treatment initiation) in register may result in greater case notification, but outcomes may decline (more 'loss to follow-up', ‘not evaluated’).
• Removing RR-TB patients from Basic TB cohort will reduce basic treatment failure.

What else?

DISCUSSION OF Country experiences

1. What are your experiences with transitioning to new definitions or reporting forms?
2. What was (or will be) the most challenging part?
3. What would you do differently, or emphasize the importance of, this time around?
4. Will you need technical or financial support to implement the changes?
5. What questions do you have?

REMEMBER:

• Forms are illustrative; shows minimum dataset.
• Countries will need to adapt the forms to fit their needs.
• Potential modifications?
• Translate
• Add new data items (ID number, dates, etc.)
• Remove HIV data (due to confidentiality laws)
• Add logos
• Change format
• Adapt terminology to local situation

What else?

Pilot test (and retest!) forms at all levels where they will be used;
Develop roll-out plan for new definitions and revised forms;
The revised definitions should be applied by the NTP at a set changeover date (e.g. 1 January);
All cases on treatment on that date will be assigned outcomes according to the revised definitions. This means that patients started on treatment in the previous year may be assigned outcomes according to two different definitions of cured or treatment failed, depending on whether they completed treatment before or after the changeover date. (More practical than retrospective outcome reassignment).

Acknowledgements
This presentation has been adapted from a WHO-developed presentation on the document. Special thanks to Dennis Falzon for sharing it.
Thank you!

Objective: minimum indicators for national or project level monitoring and suitable for different partners (WHO, TGF) easily extracted manually or electronically conform to what was used in past and DOTS system

Focus on indicators rather than forms

Indicators for RR-TB / MDR-TB / XDR-TB - Detection

Discussion points for debriefing:

1. What are some of the reasons for changing the case definitions at this time?
2. How have the treatment categories changed (i.e., Category I-IV)?

Multiple choice questions for assessing comprehension:

1. TB terminology was changed to be less judgmental. Select the correct change(s):
 a. *MDR TB* is now known as *RR TB*
 b. *Defaulter* is now known as *Lost to follow-up*
 c. *TB suspect* is now known as *presumptive TB*
 d. b and c
 e. all of the above

ANSWER: D. MDR-TB is included in the general category of rifampicin-resistant TB (as is mono-resistance, multidrug resistant TB (XDR-TB), etc.), but is still defined as resistance to at least INH and RIF.

2. True/False: One of the main reasons WHO has revised reporting forms is to permit the inclusion of TB cases detected using WHO-approved rapid diagnostics.

ANSWER: True. The introduction of diagnostics like GeneXpert requires countries to adjust how they define, collect, and analyze their TB data.
Session 18: M&E of Contact Investigations & Screening Programs

Objectives:

1. To introduce the contact investigation (CI) guidelines and the Active Case Finding Guidelines to M&E Officers.
2. To learn both methods and indicators to measure the effectiveness of screening.
3. To compare approaches to gathering these variables.
4. To review data collection tools and forms.

Background Reading:

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>45min</td>
<td>Overview of the WHO Screening & Contact Investigation Guidelines</td>
<td>Guided discussion/interactive</td>
<td>27ppt slides</td>
</tr>
</tbody>
</table>

Homework assignment:

Objectives

To introduce the new WHO Contact investigation and Screening Guidelines
To familiarize ourselves with the key concepts and variables to track the effectiveness of screening
To compare approaches to gathering this information
To practice calculating the main indicators with sample data

Why do we have to go out and look for people when our TB clinics are full?

- Why contact tracing?
- Why active case finding?
- Why now?

What do we mean by “TB screening”?
Screening tests vs. diagnostic tests?

- Screening tests sort out apparently well persons who probably have a disease from those who probably do not, and are not intended to be diagnostic. Persons with positive or suspicious findings should be tested with a confirmative diagnostic test.

Definition

"Systematic screening for active TB"
Systematic identification, in a predetermined target group, of people with suspected active TB, by the use of tests, examinations, or other procedures which can be applied rapidly

Among those screened positive, the diagnosis should be established through diagnostic tests and clinical assessments with combined high specificity.

Can target:

people who do not seek care (access barriers, not recognizing symptoms as serious, etc), or

people who seek care (with or without symptoms/signs compatible with TB), e.g. specific clinical risk groups

Define "an index TB case"

Define “a contact”

Guidelines Overview

contact investigation should be conducted for household and close contacts when the index case ...

- has sputum smear-positive pulmonary TB,
- has multi-drug-resistant TB (MDR-TB or extremely-resistant TB (XDR-TB) (proven or suspected),
- is a PLHIV or
- is a child < 5 years of age.

Whom to screen?

Priority for contact investigation should be given to:
People of all ages with symptoms suggestive of TB, Children <5 years of age,
People with known or suspected immune-compromising conditions (especially PLHIV) Contacts of index cases with MDR-TB or XDR-TB (proven or suspected).

HIV testing as part of the C.I.
In settings of high HIV prevalence it is recommended that all household and close contacts be counseled and tested for HIV.

What if the contacts do not have TB yet?

PLHIV and children < 5 years of age who are household or close contacts should be treated for presumed Latent TB Infection (LTBI)

Various regimens

Convert these into M&E indicators...

2013 WHO Screening Guidelines

WHO Guideline Review Committee approval March 2013

What are some examples of types of TB screening programs from your countries?

What do we want to know?

1. Yield of our efforts?
2. Is the benefit worth the higher cost?
3. Are we helping individuals?
4. Are we having an impact on the epidemic?
5. Are we screening the right people?
6. Are we successfully treating the people we diagnose?

What might be some risks or problems with doing a lot of “TB screening”?

1. Screening the wrong people
2. Screening people with the wrong test tests
3. Under-diagnose TB
4. Over diagnose TB – expose people to medicines they don’t need
5. Screening people too often or in ways that harm them

How will you decide whom to screen?

Screen: Cough >2 weeks (35% sens. ; 95% spec.)
Diagnosis: Sputum Smear Microscopy (61% sens. ; 98% spec.)

What information do we want to capture in our M&E system?

Brainstorming on existing M and E systems for Contact investigation
Brainstorm Basic Outcome indicators?

- % of those screened that are identified as having active tuberculosis
- Number Needed to Screen to detect 1 case
- Numbers screened / yield = number needed to screen

Some Process indicators?

- % of index TB patients with any contacts identified by name
- % of index TB patients with any contacts screened for TB according to the prioritization plan
- % of contacts that are screened for active TB, among all contacts identified
- % of contacts that have symptoms suggestive of TB, among all contacts screened

Double Danger: Tracking Risk Groups among TB contacts

- % of contacts that are under the age of 5 years
- % of contacts that are tested or known HIV positive
- % of contacts classified as having diabetes or other immunosuppressive condition

What data collection instruments would be needed to get all these data?

Show samples from Namibia

- Contact investigating slip
- TB treatment card: list of contacts for each diagnosed case
- DR-TB register
- Quarterly reporting form
- IPT register/IPT quarterly reporting form

Routine data collection tools for contact investigation

- Contact investigating slip
- TB treatment card: list of contacts for each index case
- DR-TB register (# of contacts and status of TB treatment)
- Quarterly reporting form (summary of contacts and their TB status)
- IPT register/IPT quarterly reporting form

Contact investigation slip

- Information leaflet for contacts
- Introducing TB patient to contact
Explaining risk of transmission and benefits of screening
Sharing information on common symptoms
Administering the questionnaire and possible actions based on the result

If yes to any of the listed questions below; visit to nearest health facility for further assessment

- Extract from TB Treatment Register
- Extract from DR-TB Register
- Extract from Quarterly reporting format for TB

IPT Register

OR: Contact investigation in Namibia

One of 5 research projects planned for Namibia before end of year
Using a stepped wedge design
RCT interventions during routine implementation
Cross-over design
Roll-out of interventions over a # of time periods
To be done in 2 of 13 regions

- Data collection starts July 2013
- Data analysis planned for Sept 2013
- Publishable by end of 2014

THANKS
Acknowledgements:
Knut Lönnroth (WHO)
Nanurai Ruswa (KNCV)

Discussion points for debriefing:

1. What are the main differences between a screening test and a diagnostic test?
2. Why is the choice of screening algorithm so important for M&E?

Multiple choice questions for assessing comprehension:

1. What are key impact indicators for M&E of contact investigation?
 a. Percentage of eligible child contacts under 5 year placed on IPT
 b. Percentage of people with HIV put on IPT
 c. Percentage of smear positive TB patients who report names of contacts
 d. Percentage of TB patients who complete treatment
 e. Percentage of screened contacts who are diagnosed with TB
 f. All of the above
2. What are the main differences between a screening test and a diagnostic test?
 a. A screening test is for ruling-out disease, but a diagnostic test is for ruling a disease in.
 b. A screening test should always be low tech, and a diagnostic test is high tech.
 c. A screening test needs to be inexpensive, but a diagnostic test can be expensive.
 d. A screening test should be sensitive, and a diagnostic test should be both sensitive and highly specific.
Session 19: M&E of TB in Health Care Workers and other Occupational Groups

Objectives:
1. To discuss whether and why we screen HCW for TB
2. To learn how we should monitor and evaluate HCW screening
3. To discuss various ways of assessing and reporting on HCW screening efforts

Pre-requisites: Epi-Info 7 intro, session on contact investigation and screening guidelines.

Background Preparation to be completed before the session:

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 min</td>
<td>Overview of the M&E implications of the HCW screening guidelines</td>
<td>Presentation</td>
<td>Slides</td>
</tr>
<tr>
<td>15 min</td>
<td>Review of the Ndola Screening M&E forms</td>
<td>Discussion</td>
<td>Excel file</td>
</tr>
<tr>
<td>15 min</td>
<td>Good practices in data security and confidentiality and prevention of deductive disclosure.</td>
<td>Practice filtering out names in Epi-Info.</td>
<td></td>
</tr>
</tbody>
</table>

Homework assignment: None

Session Notes

Objectives of this Session
• Why Screen Health Care Workers?
• How do we screen them?
• How do we monitor & evaluate HCW screening?
• How do we report on it?

Why? Justification

In many settings the burden of TB is higher among HCW than among the general population [Menzies 2007, Joshi 2006, Baussano 2011]

Workers’ rights: Priority access for HCW to services for the prevention, treatment, and care of tuberculosis,

HIV, through Provider Initiated Testing and Counseling (PITC) [WHO/ILO 2010]

The bigger picture

Monitoring of individuals employed in the healthcare sector for active TB is an essential component of infection control

Algorithm options
Finding the needle in the haystack
Pilot project on HCW screening
Ndola district Zambia pilot implementation
Part of larger TB infection control demonstration project

Objective of intervention
To assess feasibility and acceptance of performing the HCW screening

Will they come?

Participation rates in screening among Healthcare workers (HCWs) have been considered in a systematic literature review in 2007. A total of 25 publications were identified and the participation rates of HCWs in TST surveys ranged from 80 to 100%.[77]

Across 14 hospitals in Melbourne, participation in LTBI screening varied widely from, 13%-66% suggesting a role of hospital administration and context in determining acceptability.

Acceptability varies by gender & cadre

Even when screening was compulsory among health workers, participation rates could be as low as 75% and not conform to the prescribed periodicity.[82-83]

Participants: all HCW
All staff in 15 facilities of the Ndola
Including:

• support and administrative staff, laboratory workers
• cleaners
• TB treatment supporters

Screening process

Annual screening at own facility
HCW may choose to be screened elsewhere
We want to monitor how often this happens
HCWs with symptoms of TB (either throughout the year or during the screening process) will be referred to staff clinic of Ndola Central Hospital for
Sputum for culture at TDRC [priority]
Chest X-ray at Ndola Central Hospital [priority]

HIV screening

Provider Initiated Counseling and Testing
HCW are encouraged to know their status
Annual screening of all
Those who already know they are HIV infected do not need to be screened again
There is no need to disclose HIV test results in order to ensure confidentiality

Relevant staff & tasks

Should be an assigned trusted clinician: screening person
Encouraged HCW to report when having any symptom that may be related to TB
To invite all HCWs for annual screening & refer for CXR and sputum sample taking (use referral form and indicate this is project participant)
To keep records in a lockable cabinet
To ensure all results come in and those with TB start treatment
1 or 2 Cough monitor(s) assigned per facility
To observe all staff daily; and in case of cough encourage to report to above screening person
May be same person as above

HCW indicators

Collect number (#) and percentage (%) for the following indicators:
HCW who were TB screened
Cases of active TB
HCW with active TB disease placed on TB treatment
Cases of drug-resistant TB
TB related mortality
Four provisional core indicators
1. The percentage of HCWs who had a documented TB screening according to national and/or institutional screening algorithms/guidelines in the past 12 months
Indicator #2
2. The percentage of HCW TB cases placed on TB treatment consistent with national guidelines out of all registered TB patients in the past 12 months.
Indicator #3
3. The number of TB cases (all forms) among HCWs during the past year divided by the total
Number of registered HCWs (mid- or end-year population)
Indicator #4

4. The total number of TB deaths per year among HCWs divided by the total number of HCWs (mid- or end-year population in the past year)

(We will discuss the feasibility of this in the M&E of mortality session)

UN data Security protocols

Ensure confidentiality -2

Laboratory results will be anonymized and recorded in a provisional HCW TB register by the facilities

All forms containing personal identifiers, such as names, addresses, and telephone numbers will be kept confidential

Each HCW is assigned a unique and personal ID number; that consists of facility number and individual number

Ensure confidentiality -3

One form will link the name and address of the HCW with the unique ID number to allow for identification of the participant if follow-up activities are required.

Unique Identifiers

Programs should consider the use of a unified unique identifier that combines patient and facility characteristics such as a 17 digit alphanumeric code that makes duplication unlikely and deductive disclosure very difficult.

Facility code(3 digits)+ BMU code(3 digits)+date of birth(8 digits)+years of education (2 digits)

A randomly generated Unique identifier is preferable in cases where stigma is a major issue and people are well known to each other. However, an advantage of a non-computer generated ID is that patients who access multiple health facilities will be assigned the same code if the Unique Identifier is based upon immutable patient characteristics.

This one form/database will be kept in a lockable cabinet by a person trusted by HCW

Summary reports (without names) will be developed by facilities, with assistance from DMO office and FHI360 for the duration of the project

Data tools

The proposed screening forms consist of

2 questionnaires,

- one for all HCW;
- one only for those with symptoms: TB suspects

3 registers:

- Register to keep track of those who show up for screening (has link name and ID number)
- Register of TB suspects
- Register of HIV data

Summary form with indicators

Forms for the intervention - 1

Form 1: questionnaire for screening of HCW for TB
This form should be filled for every HCW that shows up for screening; it is needed to assess risk of TB and give proper care to HCW
It uses ID number from form 3

Forms for the intervention - 2

Form 2: HCW TB suspect form
This form should be filled for HCW who are TB suspects; in order to make sure all results are collected
Ensure that if TB is detected, treatment is started and completed
It uses ID number from form 3

Registers

Form 3: Register of TB and HIV screening of health facility staff
List of all staff that should be provided by head of facility, then be kept by screening person
Objective: to keep track of who showed up for screening and who did not; and encourage those that did not come; and keep list of reasons for refusal

Register of TB suspects among Health Facility staff (form 4):

This anonymous register is to summarize data about TB suspects and patients among HCW
It uses ID number from form 2
This is to have an overview of data to be collected and analyzed where gaps in the screening system may occur

Register to summarize HIV data among HCW (form 5)

This is to summarize HIV data from form 1 for the 3 demonstration project indicators
This is kept separate from TB registers since
It cannot have names
It is needed for all HCW (not only suspects as form 4)

Register to summarize HIV data among HCW (form 5)
This is to summarize HIV data from form 1 for the 3 demonstration project indicators
This is kept separate from TB registers since
It cannot have names
It is needed for all HCW (not only suspects as form 4)

Summary register of TB and HIV among (form 6)

This is an anonymous register to summarize the screening results from forms 1, 2, 3 and 4; including the indicators
Any TB patient should also be written in TB treatment register at own facility or other facility
Data collection: location
Screening register, TB suspect forms and diagnostic test results to be kept by own facility
Summary forms to be collected by DMO staff from facilities and NCH staff clinic

Flow of forms

Thank you
Acknowledgements:
Max Meis, Suzanne Verver, Daniel Chertob

Discussion points for debriefing:

1. Measurement of TB infection is considered the most robust measure of transmission in a health care setting. Describe two pros and cons to measuring latent TB infection in health care workers.
2. What three risks to data quality might we expect when screening health care workers? How might these be minimized in the collection and analysis processes?
3. Why does the incidence of TB in health care workers need to be adjusted for age and gender? What is meant by adjustment? What could happen if these data were not adjusted?
4. Any questions on forms?
5. What kind of data quality challenges do you foresee?

Multiple choice questions for assessing comprehension:

1. Why do we consider HCW a priority population for TB screening?
a. They are a vital resource for every country.
b. They work in a congregate setting.
c. They work with vulnerable populations.
d. They have a right to work in a safe environment.
e. All of the above

2. If there are 40,000 health workers in Maravilha, 10,000 are screened each year, and 200 cases of TB are found, what is the number needed to screen (NNS) to find 1 case of active TB among the health care workers?
 a. 100
 b. 50
 c. 200
 d. 1000
Session 20: Screening M&E Skills Practice with Electronic Data

Objectives:

1. To integrate a lot of the skills and concepts learned in the preceding sessions.
 a. Cleaning data
 b. Preparing datasets for merging
 c. Merging data sets with Unique IDs
 d. Deriving yield
2. To practice working with screening data to derive numerators and denominators

Pre-Requisites:

1. Active participation in session 9 on merging

Background Reading:

1. Understanding and Using Tuberculosis Data WHO 2014. Ch. 1 Analysis of aggregated TB notification data. www.who.int

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 min</td>
<td>Integrating cleaning, merging and analytic steps</td>
<td>Hands on skills practice</td>
<td>2. TB patient register data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Presumptive TB register data</td>
</tr>
</tbody>
</table>

Home work assignment: None

Exercises with Sample data

Using the dataset from the Maravilha
Compare the screening register with the TB patient register to calculate the overall yield of TB screening.
Calculate the NNS for the 2 risk groups--

- Looking at the number of contacts identified per case, do you notice any patterns?
- What can you conclude about the quality of these CI data?

Discussion points for the debriefing:

1. Effective contact investigation relies on TB patients disclosing the names and addresses of people they live and spend time with.
 a. Looking at the number of contacts identified per case by risk group. Do you notice any patterns?
 b. What might you infer about the data quality of these CI data?
 c. Which risks to data quality might we find in contact investigation data?
Handout Exercise 1:

Step 1: Open the TB screening register data and the TB patient register data.

Step 2: Clean the data in the following ways:

- **Clean/prepares presumptiveTBRegister.xlsx**
 6. Open worksheet in Excel
 7. Sort worksheet by Date of TB Screening (oldest to newest)
 a. Delete first record due to invalid and missing data
 8. Sort worksheet by Region (largest to smallest)
 a. Re-enter Region in rows two through four
 9. Sort worksheet by Suspect Number (largest to smallest)
 a. Delete row with Suspect Number equal to all 9s, i.e., 9999999999
 10. Save cleaned file, i.e., SuspectRegister-clean.txt (n=17,668)

Step 3: Merge the presumptive TB and TB patient data registers using Excel vlookup or EPI-Info 3, matching either with a UNIQUE ID or with another set of variables, whichever is easier.

Exercise 2: The goal of this exercise is to generate the yield of TB screening by risk group. There are seven risk groups. In the data set, each risk group is denoted by a number.

1. Compare the screening register to calculate the overall yield of all types of TB screening.

2. Calculate the NNS for the following risk groups:
 1. HIV positive persons = 1
 2. Miners = 2
 3. Contacts of a smear positive case = 3
 4. Health care workers = 4
 5. Children under 5 = 5
 6. Sex workers = 6
 7. Health care workers = 7
Categories 8 and 9 are non-risk groups.
3. Looking at the data, do you notice any patterns? What can you conclude about the quality of these screening data?

Discuss in small groups how you would monitor and evaluate a contact investigation.

- What would be the main ways for measuring process, outcome, and impact?
- What might be some indicators that you would include?
- Compare the results with the indicators below. How similar or different are they?

M&E of TB Screening and Contact Investigation

Some potential indicators to consider in a screening program include:

Input Indicators
1. Total number/proportion of nurses in the district.
2. Number/proportion of nurses providing TB services.
3. Number/proportion of registered nurses.
4. Is there any nurse at this facility who received focused training on TB contact investigation?
5. Number/proportion of TB field promoters serving this facility’s catchment population.
6. Has this facility received any telephone call from an external supervisor regarding a TB contact investigation?
7. How many visits have been conducted for the TB contact investigation, excluding visits by data collectors or interviewers for this study?
9. Are blank copies of the revised TB contact tracing slip available?
10. Are blank copies of the revised TB treatment card available?
11. Is the revised Facility TB register with contact tracing columns available?
12. Total number/proportion of patients registered in the facility TB register in the last two calendar months.
13. From (date).
14. To (date).
15. Number/proportion of patients with smear positive TB.

Process Indicators
1. Number/proportion of patients registered in the period, with documented contacts identified in that register.
2. Number/proportion of index patients with contacts documented or identified in the treatment card.
3. Number/proportion of index patients with documented contacts traced or investigated in the treatment card.
4. Total number/proportion of contacts investigated using the contact investigation slip (count completed slips).
5. Total number/proportion of contacts identified as TB suspects (yes to any screening questions).
6. Total number/proportion of contacts identified as being less than 5 years of age.
7. Total number/proportion of contacts identified as HIV positive.
8. Total number/proportion of contacts identified as having an immunosuppressive condition other than HIV, including diabetes mellitus.
9. Number/proportion of index patients who are:
 • Under 5 years of age
 • Between 5-15 years of age
 • Over 15 years of age.

Outcome Indicators
1. Percentage of index TB patients with any contacts screened for TB, according to the prioritization plan.
2. Percentage of contacts that have symptoms suggestive of TB, among all contacts screened.
3. Percentage of contacts that undergo proper diagnosis for active TB, among all contacts identified.
4. Percentage of those screened that are identified as having active tuberculosis.
5. Number needed to screen.

Impact Indicators
1. Trends in ratio of notification rates in children and adults, i.e., trends in the number/proportion of cases in children under 15 years of age (recent trans).
2. Trends in cluster size, smaller clusters, and DNA fingerprinting.
Objectives:
1. Review the new WHO suggested forms/templates and identify any associated challenges.
2. Understand the complexities of monitoring and reporting on PMDT cohorts.
3. Review the TB CARE I interim outcome tracking tool.

Background reading(s):
1. *The companion handbook to the 2011 WHO guidelines for the programmatic management of drug-resistant tuberculosis.*

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 min</td>
<td>Identify and discuss the participants’ current PMDT recording and reporting challenges</td>
<td>Guided discussion/interactive</td>
<td>None</td>
</tr>
<tr>
<td>20 min</td>
<td>Discuss the new recommended reporting framework for PMDT (including WHO forms)</td>
<td>PowerPoint presentation/interactive discussion</td>
<td>PowerPoint/paper copy of draft WHO forms</td>
</tr>
</tbody>
</table>
| 20 min| *● Draw a diagram illustrating the PMDT reporting framework for one three-month cohort*
● discuss participants’ diagrams and the ‘gold standard’ | Skills-building exercise | Paper, markers, pens |
| 10 min| Review the TB CARE I-developed tool to assist with PMDT interim outcome R&R | Guided discussion/interactive | TB CARE I-developed PMDT R&R tool |

Homework Assignment: None

Session Notes
Overview
Brainstorm: What are your current challenges with PMDT M&E?

Elements of PMDT M&E
Complexities of PMDT cohorts
Review the new suggested forms/templates
TB CARE I tool to help with tracking of interim/final outcomes

PMDT Challenges
Low treatment success
Prevent emergence of XDR-TB!!

Further scale-up of diagnosis of MDR-TB
- Sputum transportation
- Laboratory feedback to clinician
- GeneXpert MTB/RIF expansion and C/DST
- Minimize cascade between Dx and Rx
- Expand treatment capacity
- Ambulatory Rx: admission short and only on indication
- Patient-tailored support during full treatment period

TB-IC: ➔ FAST

M&E
Close supervision during full treatment period
Closer monitoring of interim results!!?

Resources
DISCLAIMER!!!

The “Companion handbook to the 2011 WHO guidelines for the programmatic management of drug-resistant tuberculosis” is due out in 2014.

DISCUSSION
What are your current Challenges with PMDT recording & Reporting?
What are we measuring in PMDT?
- Detection
- Enrollment
- Interim results
- Final outcomes

Objective: minimum indicators for national or project level monitoring and suitable for different partners (WHO, GF)
easily extracted manually or electronically
conform to what was used in past and DOTS system
Focus on indicators rather than forms
Detection – Form 05

Let’s create an MDR cohort

Draw a timeline to explain the reporting timeframes for:

1. Detection
2. Enrolment
3. Interim results
4. Final outcomes

TB CARE I interim results tool

Discussion points for debriefing

1. Why is the tracking of interim results so important for RR-TB patients?

ANSWER: The treatment period is so long, you need to know how treatment is going before it is too late. It gives you an opportunity to adjust your PMDT approach or an individual’s treatment/care mid-course, instead of waiting until the end. This can improve final outcomes and help to prevent XDR-TB from developing.

2. Why are interim results reported nine months after the end of the quarter?

ANSWER: A three-month cohort (Jan-Mar 2011) should be monitored after six months of treatment (after Oct 2011). Allowing for three months to collect the data, this report would be due nine months after the end of the quarter (Jan 1, 2012).

Two Multiple choice questions for assessing comprehension:

1. Which one of the following elements of PMDT R&R is not a part of basic TB R&R?
 a. Detection
 b. Enrollment
 c. **Interim results**
 d. Final outcomes

2. **True** or False: The new Companion handbook to the 2011 WHO guidelines for the programmatic management of drug-resistant tuberculosis will include guidance on RR-TB reporting to align with the new Definitions and reporting framework for tuberculosis – 2013 revision.
Theme 4: Fix Problems

Session 22: How to Cope with Poor Quality Data

Objectives:
1. To derive some approaches to triaging inaccurate, inaccessible, insecure, imprecise, and missing data.
2. To empower learners to make good decisions about how to handle missing data by exploring the guiding principles, the types of missing data, and how the underlying causes should drive the triage plan.
3. To teach one imperfect method of inputting missing data, the hot deck.

Pre-requisites: Elements of Data Quality and Intro to Epi-Info.

Background Preparation to be completed before the session:
2. Watch: 3:55 Epi Info 7 2x2 Table Analysis
 http://www.youtube.com/watch?v=8BZZvU4zy_c

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 min Overview of inaccurate data</td>
<td>Interactive/didactic</td>
<td>Power point slides</td>
</tr>
<tr>
<td></td>
<td>15 min Overview of missing data issues</td>
<td>Interactive/didactic</td>
<td>Power point slides</td>
</tr>
<tr>
<td></td>
<td>20 min Missing data Scenario 1</td>
<td>Discussion in groups of 3</td>
<td>Scenario 1 slide Big newsprint</td>
</tr>
<tr>
<td></td>
<td>15 min Attempt to fix missing data with a HOT DECK</td>
<td>Hands on computer exercise</td>
<td>Maravilha dataset Epi_Info 7 or Excel</td>
</tr>
<tr>
<td></td>
<td>10 min Other types of bad data</td>
<td>Interactive/didactic</td>
<td>Power point slides</td>
</tr>
</tbody>
</table>
Session Notes:

Objectives:

1. To derive some approaches to triaging inaccurate, inaccessible, insecure, imprecise, and missing data
2. To empower learners to make good decisions
3. To teach one imperfect method of imputing missing data – hot deck

What can be done?

Documenting changes to a data set

Do not work on the original data set
Always create a unique version that you will clean, in case you make a mistake.

Inaccurate data

Examples of inaccurate data that you are coping with?

Inaccurate data

- What can be done?
- Why is it inaccurate?

Inaccurate data

Examples of inaccurate data that you are coping with?

Missing/Incomplete Data

- When do we encounter data missing?
- What do you currently do to cope with missing data?

Key elements of “missingness”

Handling missing data requires knowledge

2 Most important issues:

1. **WHY ARE THE DATA MISSING?**

2. **HOW DO THE MISSING DATA RELATE TO OTHER VARIABLES?**

3 categories of missing data
• Missing completely at Random (MC@R)-
• Missing ‘at random’ (M@R)-
• Missing not at random (MN@R)-

There is software that will run a “Little’s Test” to tell you which you have.

http://www.youtube.com/watch?v=82hDeiG2D-c

What would be some TB examples of each type of missing data?

Missing completely at Random (MC@R)

=You can be 100% confident that the absence of data has no rhyme or reason to it
The best kind
As long as you don’t have a lot of missing data (<5%), you can feel not very guilty about just dropping these cases

Missing at random (M@R)

= whether or not you have the data depends on some information that you do possess (e.g. age, gender,) i.e. the likelihood of missing data can be predicted.
Most (>80%) missing data are this variety
You need to consider finding stats help to see if you try to get the data, use non-response weighting, or use single or multiple imputation,

Missing not at random (MN@R)

=not having the data is related to information you also don’t have
The worst kind
This kind can really bias your results
There is little that can be done to fix this situation except going out to get the missing data

Other inputs for decision making about Missing data

How critical are the data?
How much are missing?
Can the missing data be obtained?

Handling missing variables in a case

These approaches are almost always bad:

Ignore missing data by only focusing on complete cases
Mean imputation (e.g. just stick in the mean value from the whole sample)
Regression prediction-single imputation
“last observation carried forward” i.e. take the value from the last visit and paste it into
the missing visit.
The Gold Standards:

Find a Statistician who can help you to perform:

Multiple Imputation Methods

1. Using all the data to help guess the missing values
 E.g. “Amelia” Package in R
2. Non-response Weighting
 Figuring out how reduce the impact
 E.g. Sudaan in SAS, pweight in STATA

“Silver” Standard Options

If missing data are < 10% and you are sure you know and have all other variables that
predict the missing value, you might try to impute using a “Hot Deck” approach–
Find all the cases with the same characteristics as the case with missing variables.
Randomly pick one of the cases, and paste in that value to replace the missing value

Example of a simple hot deck

Scenario 1

In Maravilha, there is a rural TB sanatorium for children under 5. When the pediatrician
goes on holiday, no one collects samples and so all the smear or culture results for new
patients starting treatment are missing (±4 patients/wk for 3 wks).

DISCUSS IN 3s and draft a short response to present to the group:

1. What (if anything) could be done?
2. How essential are these data?
3. How much data are missing?
4. Can it be imputed? inferred? triangulated?
5. What is your team’s recommendation for this situation?

Find Missing Data

Using the SELECT command, this technique allows you to find missing records for
specific fields or variables.
How to:
READ {C:\Epi Info 7\Projects\maravilha
SELECT treatmentoutcome = ()
LIST * GRIDTABLE

Classical Analysis in Epi-Info 7

Include Missing Values feature allows you to determine if you want missing values to be included in statistical calculations or not

Inconsistent Data

What are some examples of data that you consider to be “inconsistent”? Examples of inconsistent data

HIV negative TB patients who are reported to be taking ARVs

Solutions for inconsistent data?

Triangulate to try to find the “truth”
Recode all inconsistent as missing

Imprecise (or overly precise) Data

Examples?
Old forms collapsed 0-14 yrs
Date-time stamps

Some solutions for imprecise or irrelevant data

converting open-ended questions into closed-ended questions
Disaggregation of a compound variable, such as a combined date and time variable (time stamp).
Aggregation of text via Wild card searching

Inappropriately presented

Provided as ‘string’ (text) when you need it to be numeric in order to do calculations

Epi-Info 7 uses ‘fuzzy’ searches

Searches are not case sensitive and are designed to be more inclusive than exclusive.
Spelling variations are automatically accommodated

Wild card searching

Enhance Searches with Find
When searching a numeric or date field, the accepted search format for the field is displayed to the right of the entry field.
Embedded text items in multiline and text fields can be found by searching for *word* where "word" is the text string being sought. This type of search is called a Wild Card search.

In a Wild Card search, the asterisk represents any letter or string of letters (i.e., a search for DIAGNOSES *pulm* would identify all records for a large text field called DIAGNOSES which contained the letters "pulm").

Biased data & the need to show positive results

Unbelievable data

What do you do when the data are too good to be true?

- Too clean.
- Too complete.
- Too high performing.

Discussion

What are some of the ways to address pressure to meet targets without sacrificing data quality?

What can we do with data that are simply unbelievable?

thanks

Discussion points for debriefing:

1. What are some potential problems we can have if I de-duplify in Excel? How can they be prevented by using other software?
2. Why is it problematic to simply exclude those cases with missing treatment outcome data from a cohort analysis?

Multiple choice questions for assessing comprehension:

1. Missing TB data on risk behavior such as injection drug use due to participant non-response is very unlikely to be which type of missing data:
 - a. Missing completely at random
 - b. Missing at random
 - c. Missing not at random

2. To determine what to do about missing data, the following information is needed:
 - a. When is the report due?
 - b. Who will be reading the report?
 - c. How much data are missing?
 - d. Whether the data are paper or electronic
Session 23: How to Link Datasets When There are No Unique IDs

Objectives:
1. Introduce concept of record linkage using non-unique data identifiers.
2. Compare deterministic and probabilistic linking methods.
3. Describe Link Plus software.
4. Demonstrate the use of Link Plus software for de-duplicating and linking datasets.

Background Reading:
1. LINK PLUS instructions (Link Plus 2.0 requires administrator privileges for installation, so it is essential that you work with your systems administrator to install the program prior to leaving your workplace):
 http://www.cdc.gov/cancer/npcr/tools/registryplus/lp_tech_info.htm

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 min</td>
<td>Overview of record linkage methods</td>
<td>Guided discussion/interactive</td>
<td>Power point</td>
</tr>
<tr>
<td>10 min</td>
<td>Overview of Link Plus software</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 min</td>
<td>Demonstration of Link Plus software</td>
<td></td>
<td>Link Plus software</td>
</tr>
</tbody>
</table>

Homework assignment:
Several methods exist to increase the ability of record linkage to find related records. List them and distinguish their functions.

Session Notes:
Record Linkage with LINKPLUS software

Objectives

In a previous session, you learned how to match, append, and link datasets when there is a unique identifier, in this session you will
Grasp the 2 main approaches to data linking
Learn one software of linking data (LINKPLUS)

Introduction

3 main processes exist
Manual/Clerical matching of data
Labor intensive, not always feasible, error prone, slow

Deterministic

Probabilistic

Record linkage methods

Probabilistic record linkage methods can be "trained" to perform well with much less human intervention

Deterministic record-linkage

Rules-based record linkage
Binary result, i.e. match or no match
Used to examine vital status of individual patients
Used if identifier(s) in different records identical
Hierarchical rules give better control over specificity of matches

Deterministic record-linkage

Based on personal identifier:
Unique
Universal
Permanent
Accurate
Reasonable
Simple
Known

Deterministic record linkage

A small decrease in data quality or small increase in the complexity of the data can result in a very large increase in the number of rules necessary to link records properly. Eventually, these linkage rules will become too numerous and interrelated to build without the aid of specialized software tools.

Deterministic record-linkage

Linkage rules are often specific to the nature of the data sets they are designed to link together
New data exhibiting different characteristics than was initially expected may require a complete rebuilding of the record linkage rule set, which could be very time-consuming and expensive.
Probabilistic record-linkage

Fuzzy merging/matching
Determines probability of a match
Used for the purpose of studying popn-based characteristics
Unique identifiers unavailable
Uncertain in nature therefore should only be used in this case

Probabilistic record-linkage

Based on a score reflecting probability (P) records relate to same entity
Based on comparison of a wider range of potential identifiers/variables & calculating a
maximum likelihood estimator to give a score for similarity btw records

Probabilistic record-linkage

Compute weights for each identifier based on its estimated ability to correctly identify a
match or a non-match,
Use weights to calculate probability (P) that 2 given records refer to the same entity.
MATCH: records pairs with probabilities above a certain threshold
NON-MATCHES: pairs with P below another threshold
POSSIBLE MATCHES: P that exists btw these 2 thresholds

Probabilistic record linkage

Record linkage methods

Choice between 2 methods depends on characteristics of datasets:

Several methods exist to increase the ability of record-linkage to find related records.
List them & distinguish their functions.

Selecting matching variables

Selected variables must be suitable
Allow for records to be matched but also have the ability to discriminate btw diff records
e.g. a comparison of 2 different records containing same last name has greater
discriminating power if the name is rare

Selecting matching variables
Use of probability matching depends on variable: “name”, “DOB”, “name of mother” and “address”
(word of caution if one cannot re-arrange address in pre-processing phase, it should not be used as matching variable)

Grouping/Blocking

Theoretically 1 record in 1st file to be compared with every record in 2nd file
So, combination of records & time need to be searched increases quadratically

Grouping/Blocking

Blocking/indexing techniques are used to reduce no of compared with & only within these blocks are records compared between files
E.g. use district codes (remember people move); DOB, last names; sex: good code but get 2 groups, too numerous

Searching and Scoring

Used in probabilistic process
Computer based
Very important step: core of linkage process
Computer searches for probable pairs of records, calculates P of being same person
Basically, objective is find matches

Searching and Scoring

Realistically, not possible to know which comparisons are matches and non-matches
So, combination (matches & non-matches) at any given total weight score is given
2 cut-off weights are set
> cut-off weight= LINK
< cut-off weight+ NON- LINK
Any record between two cut-offs is manually reviewed

Review Process

Intuition & intrinsic knowledge of data needed
Access to additional variables not used in search necessary
Do not delete duplicate record, should be marked and kept on file for further re-assessment
Whole process of linkage exercise should be accounted by full documentation

Software

- SAS
- Link King/Link Plus / Link Pro
- Access
- CODES 2000/LinkSolv
- Other
- FEBRL/Integrity/home

Pricing
Free to USD

Link Plus Introduction
Software developed at CDC by a statistician
Statistical specifications based on research in the published literature
Tested by researchers experienced in record-linkage
Originally designed for use by cancer registries, but can be used with any type of data in fixed width or delimited format
Windows interface that includes help and samples

Link Plus Features

Handles missing values of matching variables by treating null or empty values as missing data automatically
and allows the user to indicate additional values to treat as missing data
Facilitates a simple and efficient blocking mechanism by
indexing the variables for blocking
comparing pairs with identical values on at least one variable

Link Plus Matching Methods

Value-specific (frequency-based): Sets weights for matching values based on the frequencies of values in the files being compared. A match on a frequent value is associated with a low weight, but a match on a rare value is associated with a high weight.
Last name and first name: Incorporates both partial matching and value-specific matching and NYSIIS phonetic code to account for minor typographical errors,
misspellings, and hyphenated names. For first names, nicknames are matched with formal names.

Link Plus Matching Methods

Date: Incorporates partial matching on separate date components, and accounts for transposition of date components, as well as missing month or day values.

Generic string: Uses an edit distance function and incorporates partial matching to account for typographical errors.

Link Plus Modes

Two modes
- Detect duplicates in a single dataset
- Link records from two datasets

Deduplication

Records in the same file are blocked, compared, and scored against each other. The result is a ranked list of record pairs. High-scoring pairs may be duplicate.

Linking Records

Find the records in File A that seem to match records in File B. Calculate a score that indicates, for any pair of records, how likely it is that they both refer to the same person.

Discard unlikely matched pairs (low scores).

Sort the likely and possible matched pairs in order of their scores.

Visually review a range of uncertain matches.

Link Plus Demo

Discussion points for debriefing:

1. Describe the main differences between deterministic and probabilistic linking methods.
2. Describe a scenario in which you would use probabilistic linking.

Multiple choice questions for assessing comprehension:

1. The key phases in the record linkage process are:
 a. Data cleaning, creating unique identifiers, and selecting matching variables.
 b. Pre-processing, selecting matching variables, and manual scoring.
 c. Pre-processing, decision-making, grouping, searching/scoring, and reviewing results manually.
d. Selecting matching variables, grouping, and manual scoring.

2. Please select the correct statement below:
 a. Link Plus is a deterministic record linkage program developed by the CDC.
 b. Link Plus can run in two modes: de-duplication and record linkage.
 c. Comma delimited files are the required format for Link Plus.
 d. Link Plus saves unique versions of the Linkage and Non-matches report files automatically after each run.
Session 24: Skills Practice with Link Plus Software

Objectives:
1. Practice de-duplication using Link Plus with sample TB data.
2. Practice linking records using Link Plus with sample TB data.

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
</table>
| 20 min| Skills practice with Maravilha dataset. | Hands-on use of Link Plus De-duplication function | • Link Plus software
 • Screening data set |
| 40 min| Skills practice with Maravilha dataset. | Hands-on use of Link Plus Record Linkage function | • Link Plus software
 • Screening data set
 • TB register data set |

Homework assignment:
Go into Link Plus and reopen the Link Plus configuration file created during the de-duplication skills practice. Add/change blocking and matching variables and note the effect on the results.

Discussion points for debriefing:
1. How does this type of linking differ from the linking we did in session 10 (unique IDs)?
2. What are the main steps in linking using Link Plus?

Multiple choice questions for assessing comprehension:

1. What is a blocking variable in Link Plus?
 a. A means of pre-selecting key variables to reduce the number of comparisons.
 b. A confounder.
 c. An obstacle to assessing data quality.
 d. A sampling strategy.
Theme 5: M&E as Collaboration

Session 25: Data Are Human – The politics and Practice of TB Data Exchange

Objectives:
1. To explore and improve upon the politics and practices of TB data exchange among partners.
2. To discuss best practices for the ethical and safe sharing of TB data.
3. To improve data exchange negotiation skills.

Background Preparation to be completed before the session:
1. FHI research ethics curriculum research ethics online course:

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>4min</td>
<td>• Safe and ethical sharing of patient information among institutions.</td>
<td>Video</td>
<td>Epi-Info 7 packaging data for sharing videos</td>
</tr>
<tr>
<td></td>
<td>• Packaging data for sharing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 hr</td>
<td>Working in teams, participants role play the negotiation of TB notification data.</td>
<td>Role playing</td>
<td>Nine scenarios list</td>
</tr>
</tbody>
</table>

Homework assignment:
Practice negotiating a data exchange with your colleagues.

Discussion points for debriefing:
1. You have calculated a notified incidence of 267/100,000 for 2012. A senior manager at the NTP tells you that the notified incidence has to be above 300/100,000 or the program may lose donor funding. What options might you consider in this situation?

2. What does the term deductive disclosure mean?
3. What is a data transfer agreement, and what does it entail?

Multiple choice questions for assessing comprehension:
1. When sharing TB data, what ethical principles should be kept in mind?
 a. Justice
 b. Non-Malfeasance
 c. Respect for persons
 d. Generalizability
2. How can deductive disclosure be prevented?
 a. Remove all identifying information from a data set.
 b. Keep linking tables under lock and key.
 c. Use password protected data bases and computers.
 d. All of the above
Handout

Data Sharing Role Plays

Instructions:

Working in teams, develop a six minute role play based on one of the scenarios described below. In the role play, articulate the reluctance to share data. The NTP Manager must try to reassure the partner about the data management and data security/sharing practices of the TB program. In a four minute dialog, present the concerns and potential solutions, articulating how the use of high data quality standards and best practices can facilitate data sharing. Try to convince the resistant party to share the TB data.

1. **The Diabetes Program:** The manager sees TB reporting as an additional burden for her staff. She has suggested that she may be willing to report on the patients diagnosed through the new TB screening program if the TB clinics are also willing to institute a new diabetes screening program among TB patients. The diabetes program is new to TB diagnosis and is worried that they may be over- or under-diagnosing TB, and they prefer to keep their records internal until they have more experience.

2. **The Mining Company:** This company does not want to report their TB treatment outcome data because they worry that they will be criticized over their incomplete treatment outcome data. The RR TB patients diagnosed through the mining screening program are later transferred to the public referral hospital, so the Health Director insists there will be double counting if he reports. Discuss with the Mining Health Director to convince him of the need for data exchange.

3. **The National Pediatric Referral Hospital:** The hospital is well regarded, and their diagnostic and treatment facilities are first rate. However, they do not regard the national program seriously because they find the pediatric contact investigations to be sub-standard. They do not see how their data would be compatible with the national surveillance data because they use more sophisticated diagnostics, including induced sputa, gastric aspirates, and liquid culture on all children. They collect many more variable and they find the recording and reporting system of the national TB program too simplistic. Discuss with the Chief of Pediatrics to convince him of the need for data exchange.

4. **The Private Sector:** This sector does not want to share data because they are concerned that there will be undue scrutiny of their diagnostic practices. Some practitioners diagnose using multiple and unnecessary examinations.

5. **The HIV Program:** This program is concerned with sharing the names of HIV positive patients. The program manager believes that HIV positive clients face special threats of discrimination and ostracism, and therefore should be exempt from routine reporting. Moreover, the country’s HIV law has harsh penalties for deductive disclosure, and she does not want to be sued if the TB program’s
security is lax. Discuss with the HIV Program Manager how you might address her concerns.

6. The Indigenous Health Service: This service was formed because ethnic minority groups were not receiving good treatment in the problem sector. The leadership is wary of data collection because of past ethnic conflict in which lists were used for committing human rights violations. Role play a discussion between the Chief of the Indigenous Health Service and the TB Program Manager to resolve the issue.

7. The NGO serving injection drug users: This NGO has a TB screening program, and they contribute TB data on those who are diagnosed and the number of people screened. However, they do not differentiate between persons screened repeatedly and unique individuals. They do not collect names. Role play a discussion with the head of the NGO and the TB Manager to resolve the issue of data exchange.

8. The Ministry of Finance: The Ministry of Finance receives money from the Global Fund and keeps data on the costs of TB services offered through prisons and the HIV program, but they do not like to report the financial figures to the TB program for reasons that are unclear to the TB Manager. It may be technically difficult to determine the costs of a health worker who treats many diseases, but the TB Manager suspects that there may be other issues that explain why financial data are not shared. The TB program needs to know how much all TB services cost in order to prioritize strategically. Role play a discussion between the Chief Financial Director for Health and the TB Manager to resolve the issue.
Session 26: M&E for TB/HIV Data Integration

Objectives:

1. To show concrete examples of TB/HIV data verification and how it changes policy.
2. To understand visual benchmarking as a means of identifying data quality problems.
3. To conceptualize the problem of double-counting generally, and in TB and HIV service delivery specifically.

Background Preparation to be completed before the session:

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>45min</td>
<td>Introduction to benchmarking and examples of ecological approaches to TB/HIV</td>
<td>Presentation</td>
<td>Power point</td>
</tr>
</tbody>
</table>

Homework assignment: None

Session Notes

Objectives

- To show some examples of TB/HIV verification
- Describe visual benchmarking as a means of identifying data quality problems
- To discuss double-counting
- To de-duplify TB/HIV data in Epi Info 7 to address double counting

Data Quality implies looking not only at the completeness of individual columns and rows, but also looking at data in relation to each other.

Benchmarking..

“Ecological” comparison of 2 values
Similar to histograms for “outliers” but with 2 or more variables
What do you see in this graph?

Benchmarking
Operational issues—discuss in 3s
How important are those dates of ART/CPT start for M&E?
What are the possible M&E implications of reporting ART/CPT status by quarter instead of at the end?

Discussion points for debriefing:

1. Name three types of double counting and how they differ.
2. Is it important to have start dates of ART (antiretroviral treatment)/cotrimoxizole (CPT) in the TB register? Why or why not?
3. What are the possible M&E implications of reporting ART/CPT status by quarter instead of at the end?

Multiple choice questions to assess comprehension:

1. What is benchmarking? (Choose one)
 a. A means of identifying outliers through ecological comparison.
 b. A method for triangulation of qualitative data.
 c. A method of verifying the accuracy of data.

2. What are some potential pitfalls of de-duplicating TB data using Excel?
 a. No syntax to re-run if needed.
 b. No audit trail.
 c. Duplicates are removed in order.
 d. All of the above.
Session 27: Assessing Under-Reporting through Inventory Studies

Objectives:
1. To familiarize learners with the strengths and weaknesses of four techniques for measuring undercounting.

Pre-requisites: Sessions 9, 10, 25, and 26 on linking datasets

Background Preparation to be completed before the session:

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Methodology</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 min</td>
<td>Overview of Under-counting: justification and studies to date</td>
<td>Presentation</td>
<td>8 CDC/WHO slides</td>
</tr>
<tr>
<td>5 min</td>
<td>Method 1: Prospective Random Sentinel Verification</td>
<td></td>
<td>2 slides</td>
</tr>
<tr>
<td>5 min</td>
<td>Method 2: Prospective Mass Verification</td>
<td></td>
<td>2 slides</td>
</tr>
<tr>
<td>5 min</td>
<td>Method 3: Retrospective 3D Verification</td>
<td></td>
<td>4 slides</td>
</tr>
<tr>
<td>45 min</td>
<td>3D verification simulation game using Maravilha data</td>
<td>Game</td>
<td>21 cups, labeled candies, and a venn diagram</td>
</tr>
</tbody>
</table>

Homework assignment: None

Session Notes
(i.e. low level of completeness)

What is an inventory study?

A study of the level of under-reporting of TB cases

What is under-reporting?

Dimensions of Data Quality

Why are inventory studies important?
TB incidence is best measured from state-of-the-art TB surveillance systems linked to well performing health systems

High coverage of health/social protection and good diagnostic services -> limited under-diagnosis
High coverage of reporting (including from the private sector) -> limited under-reporting*

Under-reporting in India

3 possible aims

Quantify the level of under-reporting of diagnosed cases of TB to national surveillance systems
Demonstrate under-reporting is minimal
Estimate TB incidence using capture-recapture methods, if applicable

Where should inventory studies be done?

Inventory studies are especially helpful in countries with

High TB burden
Robust TB surveillance system not yet in place
High utilization of private providers and/or private sector / hospitals / facilities suspected to not report TB cases

How can inventory studies help strengthen surveillance?

Inventory studies can help engage private providers

Measuring levels of under-reporting can

identify gaps to target available resources
be used to improve estimates of TB incidence
identify countries where TB incidence can be measured directly from surveillance data

Recent inventory studies

Capture-recapture
Netherlands
UK
Egypt
Syria
Yemen
Iraq

How do inventory studies work?
TB cases detected by health providers are recorded

NTP providers (e.g. TB dispensaries)
General hospitals
Private doctors
Health insurance
...

Match cases in non-NTP list with cases in NTP list

Three main study designs

Prospective
Prospective Random Sentinel Verification
2 data sources
Prospective Mass Verification 3 data sources

Retrospective
Retrospective 3D Verification using existing computerized records
3 data sources

Method 1: Prospective Random Sentinel Verification

Quantify under-reporting, *no incidence estimation*
2 data sources

Method 2- Prospective Mass Verification

Quantify under-reporting and estimate incidence
At least 3 data sources
Whole country
Very intensive
Simple Random Sampling of Providers (50%)

Method 3- Retrospective 3D Verification

Quantify under-reporting *and estimate incidence* using existing computerized records
3 data sources

Sampling

Limitations of capture-recapture methods: Four conditions

1. No change in study population during study
2. Cases can be matched across data sources (i.e. no misclassification)
3. Probability of being included in a data source is the same for all members of the population
4. Data sources are independent
Essential ingredients

Prospective:

Providers outside NTP network can be mapped and convinced to participate

Essential ingredients

Case-based data with reliable personal identifiers
Standard case definitions across all care providers
Capacity in sampling design, data management and data analysis
Adequate staffing and funding
At least three fairly independent data sources, if capture-recapture methods used

Proportion of patients with active TB reported only to the HIV surveillance database

Capture-recapture study in Iraq

Capture Recapture Game

How complete is Maravilha’s surveillance data?

Capture-recapture game

3 cups filled with candies with TB patient ID labels,
Working in teams
complete the venn diagram

What proportion of TB cases were under-reported?

Thank you

Acknowledgements:
Emily Bloss (CDC), Phillipe Glaziou (WHO), Rob van Hest (KNCV),

Homework

1. What do you think is the biggest challenge with carrying out an inventory study?
2. Do you think retrospective or prospective methods are most appropriate for your setting, and why?

Discussion points for debriefing:
1. What do you think is the biggest challenge in carrying out a prospective inventory study?

2. Do you think a retrospective or prospective method is more appropriate for your setting, and why?

Multiple choice questions for assessing comprehension:

1. What are the pre-requisites for a capture–recapture study? (check all that apply)
 a. Ethical permission to interview TB patients
 b. Unique identifiers
 c. Three independent sources of TB notification data

2. What are the potential benefits of measuring underreporting? (select one)
 a. Can identify gaps to target available resources
 b. Can help improve estimates of TB incidence
 c. Can identify countries where TB data are so good that incidence can be measured directly from surveillance data
 d. All of the above
Answer Sheet for Inventory Studies Simulation Game — 21 Candies

<table>
<thead>
<tr>
<th>Only source 1: National TB surveillance system</th>
<th>Only source 2: TB Patient support group membership list</th>
<th>Only source 3: Patients’ Compensation claims from the Maravilha miners union</th>
</tr>
</thead>
<tbody>
<tr>
<td>58315 sonomidoso</td>
<td>54204 sofarayufa</td>
<td>81190,0 nododoKeu</td>
</tr>
<tr>
<td>67688 latilanono</td>
<td>58045 sonoufaso</td>
<td>81197,0 nododoKeti</td>
</tr>
<tr>
<td>67713 latitidomi</td>
<td></td>
<td>57794,0 sotitiKefa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1+2</th>
<th>2+3</th>
<th>1+3</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td>11357 dodomisoti</td>
<td>11044 dodoufafa</td>
<td>10744 doutifafa</td>
<td>10645 doulafaso</td>
</tr>
<tr>
<td>38668 minolalano</td>
<td>11075 dodoutiso</td>
<td>10823 dounoraymi</td>
<td>10658 doulasono</td>
</tr>
<tr>
<td>38670 minolatiu</td>
<td>11258 doraysono</td>
<td>11005 doudouso</td>
<td>10672 doulatiray</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>67723 latitiraymi</td>
</tr>
</tbody>
</table>
Labels for the Candy or items to represent TB patients. Each color represents an independent data source.

<table>
<thead>
<tr>
<th>Color</th>
<th>Labels</th>
<th>Color</th>
<th>Labels</th>
<th>Color</th>
<th>Labels</th>
<th>Color</th>
<th>Labels</th>
<th>Color</th>
<th>Labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>58315</td>
<td>Sonomidoso</td>
<td>67688</td>
<td>Latilanono</td>
<td>67713</td>
<td>Latitidomi</td>
<td>11357</td>
<td>Dodomisoti</td>
<td>38668</td>
<td>Minolalano</td>
</tr>
<tr>
<td>38670</td>
<td>Minolatiu</td>
<td>10744</td>
<td>Doutifafa</td>
<td>10823</td>
<td>Dounoraymi</td>
<td>11005</td>
<td>Dodouuso</td>
<td>10645</td>
<td>Doulafaso</td>
</tr>
<tr>
<td>10658</td>
<td>Doulasono</td>
<td>10672</td>
<td>Doulatify</td>
<td>67723</td>
<td>Latitiraymi</td>
<td>54204</td>
<td>Sofarayufa</td>
<td>58045</td>
<td>Sonoufaso</td>
</tr>
<tr>
<td>11357</td>
<td>Dodomisoti</td>
<td>38668</td>
<td>Minolalano</td>
<td>38670</td>
<td>Minolatiu</td>
<td>11044</td>
<td>Dodoufafa</td>
<td>11075</td>
<td>Dodoutiso</td>
</tr>
<tr>
<td>11258</td>
<td>Dodoraysono</td>
<td>10645</td>
<td>Doulafaso</td>
<td>10658</td>
<td>Doulasono</td>
<td>10672</td>
<td>Doulatify</td>
<td>67723</td>
<td>Latitiraymi</td>
</tr>
<tr>
<td>81190</td>
<td>Nododokeu</td>
<td>81197</td>
<td>Nododoketi</td>
<td>57794</td>
<td>Sotitikefa</td>
<td>11044</td>
<td>Dodoufafa</td>
<td>11075</td>
<td>Dodoutiso</td>
</tr>
<tr>
<td>11258</td>
<td>Dodoraysono</td>
<td>10744</td>
<td>Doutifafa</td>
<td>10823</td>
<td>Dounoraymi</td>
<td>11005</td>
<td>Dodouuso</td>
<td>10645</td>
<td>Doulafaso</td>
</tr>
<tr>
<td>10658</td>
<td>Doulasono</td>
<td>10672</td>
<td>Doulatify</td>
<td>67723</td>
<td>Latitiraymi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reference Materials

Service Availability and Readiness Assessment (SARA-WHO):

Assessing tuberculosis under-reporting through inventory studies. WHO 2012:

Checklist of Standards and Benchmarks for TB Surveillance and Vital Registration Systems.
Compendium of indicators for monitoring and evaluating national tuberculosis programs. WHO, 2004, page 10:

Data Quality Audit Tool. Guidelines for implementation. MEASURE Evaluation

Definitions and reporting framework for tuberculosis – 2013 revision. WHO 2013:
http://apps.who.int/iris/bitstream/10665/79199/1/9789241505345_eng.pdf

WHO External

Monitoring and evaluation tool for tuberculosis programs in refugee and post-conflict settings. CDC 2010.

Monitoring and Evaluation Toolkit - World Health Organization:

Standards and benchmarks for tuberculosis surveillance and vital registration systems:
TB Infection Control Monitoring and Evaluation | I-TECH TB.

ICEBREAKER: BUDDY BINGO

<table>
<thead>
<tr>
<th>Has 2 or more brothers</th>
<th>Has a bicycle</th>
<th>Has been to Mexico</th>
<th>Plays football</th>
<th>Has a rabbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doesn't drink alcohol</td>
<td>Is afraid of spiders</td>
<td>Is left handed</td>
<td>Is younger than you</td>
<td>Is wearing earrings</td>
</tr>
<tr>
<td>Is a good dancer</td>
<td>Plays an instrument</td>
<td>Free space</td>
<td>Likes to sing</td>
<td>Doesn't like chocolate</td>
</tr>
<tr>
<td>Plants a garden</td>
<td>Wishes they were sleeping</td>
<td>Speaks more than 3 languages</td>
<td>Likes onions</td>
<td>Has never been to Kenya before</td>
</tr>
<tr>
<td>Is wearing black socks</td>
<td>Has a child</td>
<td>Likes the color pink</td>
<td>Is a twin</td>
<td>Is afraid of heights</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Has a cat</th>
<th>Has 2 or more brothers</th>
<th>Plays an instrument</th>
<th>Likes spicy food</th>
<th>Is afraid of spiders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is left handed</td>
<td>Likes the color orange</td>
<td>Doesn't like cheese</td>
<td>Has run a marathon</td>
<td>Can write in more than 2 languages</td>
</tr>
<tr>
<td>Plants a garden</td>
<td>Is wearing a watch</td>
<td>Free space</td>
<td>Is afraid of heights</td>
<td>Plays football</td>
</tr>
<tr>
<td>Is younger than you</td>
<td>Is wearing black socks</td>
<td>Is a good cook</td>
<td>Wishes they were sleeping</td>
<td>Likes to sing</td>
</tr>
<tr>
<td>Has a child</td>
<td>Has been to Mexico</td>
<td>Has never been to Kenya before</td>
<td>Doesn't drink coffee</td>
<td>Is a twin</td>
</tr>
<tr>
<td>Plays an instrument</td>
<td>Is wearing earrings</td>
<td>Is afraid of heights</td>
<td>Plants a garden</td>
<td>Is a good cook</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Likes to sing</td>
<td>Is a twin</td>
<td>Is afraid of spiders</td>
<td>Has a cat</td>
<td>Has been to Mexico</td>
</tr>
<tr>
<td>Speaks more than 3 languages</td>
<td>Plays football</td>
<td>Free space</td>
<td>Is left handed</td>
<td>Is wearing black socks</td>
</tr>
<tr>
<td>Has 2 phones</td>
<td>Wishes they were taller</td>
<td>Has 2 or more brothers</td>
<td>Has a child</td>
<td>Is younger than you</td>
</tr>
<tr>
<td>Likes the color pink</td>
<td>Has run a marathon</td>
<td>Likes spicy food</td>
<td>Doesn't like bananas</td>
<td>Has never been to Kenya before</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Doesn't drink coffee</th>
<th>Wishes they were sleeping</th>
<th>Likes to sing</th>
<th>Plays football</th>
<th>Has run a marathon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is wearing earrings</td>
<td>Is wearing blue socks</td>
<td>Is a good cook</td>
<td>Likes spicy food</td>
<td>Likes the color pink</td>
</tr>
<tr>
<td>Has never been to Vietnam before</td>
<td>Is afraid of monkeys</td>
<td>Free space</td>
<td>Speaks more than 3 languages</td>
<td>Is left handed</td>
</tr>
<tr>
<td>Has been to Mexico</td>
<td>Is afraid of heights</td>
<td>Is younger than you</td>
<td>Plays an instrument</td>
<td>Has a cat</td>
</tr>
<tr>
<td>Is a twin</td>
<td>Doesn't like chocolate</td>
<td>Has a child</td>
<td>Has 2 or more brothers</td>
<td>Plants a garden</td>
</tr>
<tr>
<td>Speaks more than 3 languages</td>
<td>Is younger than you</td>
<td>Plants a garden</td>
<td>Is a good cook</td>
<td>Has never been to Kenya before</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Plays an instrument</td>
<td>Doesn't like chocolate</td>
<td>Has been to Mexico</td>
<td>Is afraid of spiders</td>
<td>Is first born in their family</td>
</tr>
<tr>
<td>Has a cat</td>
<td>Is afraid of heights</td>
<td>Free space</td>
<td>Wishes they were sleeping</td>
<td>Has run a marathon</td>
</tr>
<tr>
<td>Likes spicy food</td>
<td>Has 2 or more brothers</td>
<td>Is wearing black socks</td>
<td>Is left handed</td>
<td>Is wearing earrings</td>
</tr>
<tr>
<td>Has a child</td>
<td>Plays football</td>
<td>Likes to sing</td>
<td>Likes the color pink</td>
<td>Doesn't drink tea</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Is left handed</th>
<th>Has never been to Kenya before</th>
<th>Has run a marathon</th>
<th>Likes the color pink</th>
<th>Is wearing earrings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is younger than you are</td>
<td>Plants a garden</td>
<td>Plays an instrument</td>
<td>Doesn't like chocolate</td>
<td>Is a good cook</td>
</tr>
<tr>
<td>Likes to sing</td>
<td>Wishes they were sleeping</td>
<td>Free space</td>
<td>Plays football</td>
<td>Likes spicy food</td>
</tr>
<tr>
<td>Speaks more than 3 languages</td>
<td>Has a cat</td>
<td>Is a twin</td>
<td>Doesn't drink coffee</td>
<td>Is wearing black socks</td>
</tr>
<tr>
<td>Is afraid of heights</td>
<td>Is afraid of spiders</td>
<td>Has been to Mexico</td>
<td>Has a child</td>
<td>Has 2 or more brothers</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorptive capacity</td>
<td>A program’s ability to take in, assimilate, and apply new information.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessibility</td>
<td>The degree to which data are available to the people who need them.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appreciative inquiry</td>
<td>An organizational development method which focuses on increasing what an organization does well rather than on eliminating what it does poorly.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attribution</td>
<td>An ascribed quality, character, or right.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audit</td>
<td>A formal examination of an organization’s or individual’s accounts or financial situation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behavior change</td>
<td>A broad range of activities and approaches which focus on the individual, community, and environmental influences on behavior.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Believability</td>
<td>Capable of being believed, especially as within the range of known possibility or probability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bias</td>
<td>An inclination of temperament to present or hold a partial perspective at the expense of (possibly equally valid) alternatives in reference to objects, people, or groups.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Branding</td>
<td>The promoting of a product or service by identifying it with a particular name, term, design, symbol, or any other feature that identifies the good or service as distinct from those of other sellers.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capture-recapture</td>
<td>Methods having their antecedents in animal ecology and related to attempts to estimate or adjust for the extent of incomplete ascertainment, using information from the overlapping lists of cases from distinct sources from the affected population.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case study</td>
<td>An intensive analysis of an individual unit (as a person or community) stressing developmental factors in relation to the environment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catchment area</td>
<td>The geographical area served by an institution.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Causal inference</td>
<td>The process of drawing a conclusion about a relationship or causal connection based on the conditions of the occurrence of an effect.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Certification</td>
<td>The confirmation of certain characteristics of an object, person, or organization.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change Agent</td>
<td>Any person within an institution that has enough social capital, respect, and leadership to catalyze new behaviors among the staff through example, mentoring, advocacy or other means.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change process</td>
<td>An effective change process is a recipe for selecting, adapting, implementing, and scaling up effective practices in a way that will achieve health results and sustain those results over the years.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civil society</td>
<td>Also known as non-governmental organizations (NGOs), these are critical for the advancement of universal values around human rights, the environment, labor standards, and anti-corruption.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Codebook</td>
<td>A type of document used for gathering and storing codes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohort analysis</td>
<td>The analysis of data about a particular group. Cohort analysis may involve comparing successive groups passing through a cycle of activity.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comma separated values</td>
<td>A file that stores tabular data (numbers and text) in plain-text form separated by commas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commitment to change</td>
<td>Commitment to change is the determination to carry the process to the end. The change is complete when all program levels, working together, continually produce desired results as they implement, or support, the changed practices. When stakeholders are committed to change, they don’t give up when they encounter barriers, nor do they stop when donors turn their resources toward other needs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication channels</td>
<td>A medium through which a message is transmitted to its intended audience, such as print media or broadcast.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community empowerment</td>
<td>The process of enabling communities to increase control over their lives.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community systems</td>
<td>Community-led structures and mechanisms used by communities through which community members and community-based organizations and groups interact, coordinate, and deliver their responses to the challenges and needs affecting their communities.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community systems strengthening (CSS)</td>
<td>An approach that promotes the development and sustainability of communities and community organizations, enabling them to contribute to the long-term sustainability of health and other interventions at the community level.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completeness</td>
<td>Having all necessary parts, elements, or steps.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conceptual framework/program theory model</td>
<td>A logic model that demonstrates how an intervention (a project, a program, a policy, or a strategy) is understood to contribute to possible or actual impacts.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concise representation</td>
<td>A set of coherent ideas or concepts organized in a manner that makes them easy to communicate to others.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirmability</td>
<td>One of the standards in qualitative inquiry which refers to the quality of the results produced by an inquiry in terms of how well they are supported by informants/members who are involved in the study and by events that are independent of the inquirer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conformance</td>
<td>The act of matching attitudes, beliefs, and behaviors to group norms.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Construct validity
This refers to whether a scale measures or correlates with the theorized psychological scientific construct that it purports to measure.

Control group
A set of items or people that serves as a standard or reference for comparison with an experimental group.

Coping skills
Psychological mechanisms which allow for constantly changing cognitive and behavioral efforts to manage specific external and/or internal demands that are appraised as taxing or exceeding the resources of the person.

Cost-benefit analysis
A systematic process for calculating and comparing benefits and costs of a project, decision, or governmental policy.

Counter factual
This indicates what would be the case if its logic were true (although it is not true) or contrary to fact.

Credibility
One of the standards and quality in qualitative inquiry that involves establishing that the results of qualitative research are credible or believable from the perspective of the participant in the research.

Cross-sectional data
Refers to observations of many individuals (subjects, objects) at a given time. A type of one-dimensional data set.

Cut-off value
A threshold value for a quantity.

Data augmentation
Adds value to base data by adding information derived from internal and external sources within an enterprise, which can help provide more in-depth insight.

Data dictionary
A centralized repository of information about data, such as meaning, relationships to other data, origin, usage, and format.

Data integration
This has the goal of building and presenting a unified view of data owned by heterogeneous data sources in distributed, cooperative, and peer-to-peer information systems.

Data mining
This is a field at the intersection of computer science and statistics that attempts to discover patterns in large data sets.

Data naming conventions
Refers to a convention established to resolve problems with traditional data names.

De-duplication
Refers generally to eliminating duplicate or redundant information to try and reduce the storage needed for backups by chunking the backup stream and storing unique segments once.

Dependability
One of the standards and quality in qualitative inquiry for judging qualitative studies, this refers to the stability or consistency of the inquiry processes used over time.
Descriptive statistical analysis The analysis of data that help describe, show, or summarize data in a meaningful way such that patterns might emerge from the data. However, it does not allow one to make conclusions beyond the data analyzed or reach conclusions regarding any hypothesis made.

Deterministic A traditional branch of philosophy stating that for everything that happens there are conditions in which nothing else could happen.

Diagnostic Delay The time interval between the first TB diagnostic test and the patient receiving the tuberculosis diagnosis if it exceeds two days.

Diffusion The spread of cultural elements from one area or group of people to others by contact.

Disaggregated analysis Analysis by lowest level or by specific characteristics, such as sex or age.

Dissemination plan A part of the overall project plan that explains how the project will share outcomes with stakeholders, relevant institutions, and organizations, and how it will contribute to the overall dissemination strategy for the program.

Dosage: Administration of a therapeutic agent or exposure in prescribed amounts.

Double data entry A data entry quality control method where the same data is punched and verified by two different operators.

Dummy values: A numerical variable used in regression analysis to represent subgroups of the sample in your study.

Early adopters In the diffusion of innovation theory, the minority group (comprising about 14%) of the population which, after innovators, is first to try new ideas, processes, goods, and services.

Ease of manipulation Ease of use.

Effect size (Minimum acceptable effect size) A measure of the strength of a phenomenon (for example, the relationship between two variables in a statistical population) or a sample-based estimate of that quantity.

Emic Of, relating to, or involving analysis of cultural phenomena from the perspective of one who participates in the culture being studied.

Empirical Research A way of gaining knowledge by means of direct and indirect observation or experience.

Empowerment Refers to increasing the spiritual, political, social, educational, gender, or economic strength of individuals and communities.
Enabling environment - The expression that encompasses policies that focus on creating and maintaining an overall climate that facilitates high quality TB control implementation.

Entertainment-education - The process of purposely designing and implementing a media message to both entertain and educate, in order to increase audience knowledge about an educational issue, create favorable attitudes, and change overt behavior.

Error log - A log of errors encountered by a system, which can be extremely useful tools for people who need to diagnose and manage systems such as web servers and office networks.

Etic - Of, relating to, or involving analysis of cultural phenomena from the perspective of one who does not participate in the culture being studied.

Expectation management - A formal process to continuously capture, document, and maintain the content, dependencies, and sureness of the expectations for persons participating in an interaction, and to apply the information to make the interaction successful.

Experimental designs - The design of any information-gathering exercises where variation is present, whether under the full control of the experimenter or not.

External validity - The generalizability of study results to other groups, settings, treatments, and outcomes.

Feasibility - That which is achievable.

Fidelity - The degree to which an electronic device (record player, radio, or television) accurately reproduces its effect (as sound or picture).

Focus groups - A form of qualitative research in which a group of people are asked about their perceptions, opinions, beliefs, and attitudes towards a product, service, concept, advertisement, idea, or packaging.

Formative evaluation - This seeks to strengthen or improve a program or intervention by examining, amongst other things, the delivery of the program, the quality of its implementation, and the organizational context, personnel, structures, and procedures.

Gap analysis - A technique that businesses use to determine what steps need to be taken in order to move from its current state to its desired future state.

Hard-to-Reach Groups - Refers to entirely disparate populations and communities who pose difficulties to the conventional ways of doing things.

Harm reduction - Refers to a range of public health policies designed to reduce the harmful consequences associated with human behaviors, even if those behaviors are risky or illegal.
<table>
<thead>
<tr>
<th>Health information system (HIS)</th>
<th>A system for the collection/processing of data from various sources, using the information for policy making and management of health services.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health seeking delay</td>
<td>A long time interval between initial symptoms and arrival to the first health care provider, e.g., more than 30 days.</td>
</tr>
<tr>
<td>Histogram</td>
<td>This is a graphical representation showing a visual impression of the distribution of data.</td>
</tr>
<tr>
<td>Inference</td>
<td>The act or process of deriving logical conclusions from premises known or assumed to be true.</td>
</tr>
<tr>
<td>Implausible value</td>
<td>A data entry error with 'implausible' or 'impossible' values, for they make no sense when considering the expected range of the data.</td>
</tr>
<tr>
<td>Incentives</td>
<td>Something that motivates an individual to perform an action.</td>
</tr>
<tr>
<td>Indicator</td>
<td>Statistics used to measure current conditions as well as to forecast financial or economic trends.</td>
</tr>
<tr>
<td>Indirect effects</td>
<td>Describes a situation where national courts are required to interpret national law in line with an unimplemented or badly implemented directive, as opposed to ignoring national law in preference to the directive, as occurs when direct effect is invoked.</td>
</tr>
<tr>
<td>Information and communications technology (ICT)</td>
<td>A more specific term that stresses the role of unified communications and the integration of telecommunications (telephone lines and wireless signals), computers, and necessary enterprise software, middleware, storage, and audio-visual systems, which enable users to access, store, transmit, and manipulate information.</td>
</tr>
<tr>
<td>Inputs</td>
<td>Resources such as people, raw materials, energy, information, or finance that are put into a system (such as an economy or computer system) to obtain a desired output.</td>
</tr>
<tr>
<td>Interaction effect</td>
<td>The simultaneous effect of two or more independent variables on at least one dependent variable in which their joint effect is significantly greater (or significantly less) than the sum of the parts.</td>
</tr>
<tr>
<td>Internal consistency</td>
<td>A measure based on the correlations between different items on the same test (or the same subscale on a larger test). It measures whether several items that propose to measure the same general construct produce similar scores.</td>
</tr>
<tr>
<td>Internal validity</td>
<td>A property of scientific studies which reflects the extent to which a causal conclusion based on a study is warranted.</td>
</tr>
<tr>
<td>Interpretability</td>
<td>Mathematical logic that explains the relationship between formal theories that expresses the possibility of interpreting or translating one into the other.</td>
</tr>
</tbody>
</table>
Intervening variables
A hypothetical internal state that is used to explain relationships between observed variables, such as independent and dependent variables, in empirical research.

Lot quality assessment sampling (LQAS)
A random sampling methodology, originally developed in the 1920s as a method of quality control in industrial production, that requires substantially smaller sample sizes.

Management information system (MIS)
Computer systems used for managing three primary components: technology, people (individuals, groups, or organizations), and data (information for decision making) and used to analyze and facilitate strategic and operational activities.

Mapping
Determination of the scale/level of detail and content of geographic or cartographic databases, entry criteria, and symbol specification for geospatial objects, generalization, and layout design.

Maturation
The emergence of personal and behavioral characteristics through growth processes.

Measurement error
The difference between a measured value of quantity and its true value obtained by a measurement.

Measurement validity
The degree to which a computation measures what it purports to.

Misclassification
A flaw in measuring exposure, covariate, or outcome variables that results in different quality (accuracy) information between comparison groups.

Mixed-method designs
To collect, analyze, and report both quantitative and qualitative data (multiple ways) to explore a research problem.

Monitoring
Supervising activities in progress to ensure they are on-course and on-schedule in meeting the objectives and performance targets.

Non-probability sampling/purposive sampling
The researcher chooses the sample based on the knowledge of the population and the purpose of the study. This is used primarily when there is a limited number of people that have expertise in the area being researched.

Non-response
This is when the required information is not obtained from the persons selected in the sample.

Non-response bias
The bias that occurs in statistical surveys if the answers of respondents differ in a meaningful ways from the potential answers of those who did not answer.

Null hypothesis
A type of hypothesis used in statistics that proposes that no variation exists between variables, or that a single variable is no different than zero.

Objectivity
A lack of favoritism toward one side or another.
One-tailed test A statistical test in which the critical area of a distribution is one-sided so that it is either greater than or less than a certain value, but not both; such that the sample that is being tested falls into the one-sided critical area, the alternative hypothesis will be accepted instead of the null hypothesis.

Opinion leaders Leadership by an active media user who interprets the meaning of media messages or content for lower-end media users.

Optical scanning The process of interpreting data in printed, handwritten, bar-code, or other visual form by a device (optical scanner or reader) that scans and identifies the data.

Order bias Survey bias by which responses can be affected by the order of answer choices.

Organization development A deliberately planned effort to increase an organization’s relevance and viability.

Outcome Indicator A benchmark that tracks the direct consequence of an activity or strategy upon the beneficiary or program.

Outlier An observation that is numerically distant from the rest of the data.

Outputs The term often referring to a tangible product produced following an activity, such as a manual or a poster.

Over-reporting To report (an event or instance of something) an occurrence (such as TB diagnosis or cure) more often that is actually occurs.

Panel design Refers to multi-dimensional data frequently involving measurements over time, i.e., participants are followed over multiple survey (observations on multiple phenomena observed) rounds for a specified period of time.

Parsing The process of analyzing a string of symbols, either in natural language or in computer languages.

Participant observation One type of data collection method typically done in the qualitative research paradigm, to gain a close and intimate familiarity with a given group of individuals (such as a religious, occupational, sub cultural group, or a particular community) and their practices through an intensive involvement with people in their cultural environment, usually over an extended period of time.

Participatory communication A term that denotes the theory and practices of communication used to involve people in the decision-making of the development process.

Patient identifier (unique identifier) This is a unique value assigned to an individual to facilitate positive identification of that individual for healthcare purposes.
Personal digital assistants (PDA)

A mobile device that functions as a personal information manager.

Political will

The exercise of an abstract feature of political authority to enforce certain acts for the benefit of its intention, usually for the public welfare.

Populate

To fill or be present in a place, environment, or domain.

Positioning

The process by which marketers try to create an image or identity in the minds of their target market for its product, brand, or organization.

Positive deviance

An approach to behavioral and social change based on the observation that in any community, there are people who's uncommon but successful behaviors or strategies enable them to find better solutions to a problem than their peers, despite facing similar challenges and having no extra resources or knowledge than their peers.

Precision

The measurement deviation from true value and its scatter.

Pretest

A preliminary test administered to determine the baseline knowledge or preparedness of something, such as a questionnaire, product, or idea.

Propensity score matching

This is a statistical matching technique that is used in the statistical analysis of observational data that attempts to estimate the effect of a treatment, policy, or other intervention by accounting for the covariates that predict receiving the treatment.

Prospective

Likely to happen at a future date; concerned with or applying to the future.

Punctuality

The characteristic of being able to complete a required task or fulfill an obligation before or at a previously designated time.

Quasi experimental design (QED)

An empirical study used to estimate the causal impact of an intervention on its target population, but they specifically lack the element of random assignment to treatment or control.

Qualitative data

Data that approximates or characterizes but does not measure the attributes, characteristics, or properties, of a thing or phenomenon. Qualitative data describes whereas quantitative data defines.

Quantitative data

Refers to the systematic empirical investigation of social phenomena via statistical, mathematical, or computational techniques.

Queries

A form of questioning in a line of inquiry.

Random sampling

A subset of individuals (a sample) chosen from a larger set (a population) through a process of chance.
Referral delay An excessive time interval between arrival at first point of care and first TB diagnostic test, e.g., length over one day.

Reflexivity Sensitivity to the ways in which the researcher and the research process have affected the data

Register A formal or official recording of items, names, or actions, a book for such entries, or an entry in such a record.

Reliability coefficients The ratio of true score variance to the total variance of test scores.

Reliability The ability of a person or system to perform and maintain its functions in routine circumstances, as well as hostile or unexpected circumstances.

Representativeness The level of how well or how accurately something reflects upon a sample.

Reputation An overall quality or character of a social entity (a person, a group of people, or an organization) that forms the basis of an opinion about that entity, typically a result of social evaluation on a set of criteria.

Response rate Refers to the number of people who answered a survey divided by the number of people in the sample, usually expressed in the form of a percentage.

Retrospective To take a look back at events that have already taken place.

Return on investment A performance measure used to evaluate the efficiency of an investment or to compare the efficiency of a number of different investments.

Selection bias A statistical bias in which there is an error in choosing the individuals or groups to take part in a scientific study.

Self-efficacy The measure of one's own ability to complete tasks and reach goals.

Social Capital The expected collective or economic benefits derived from the preferential treatment and cooperation between individuals and groups.

Social Change Any significant alteration over time in behavior patterns and cultural values and norms.

Social marketing The systematic application of marketing, along with other concepts and techniques, to achieve specific behavioral goals for a social good

Social networks A social structure made up of a set of actors (such as individuals or organizations) and a complex set of the dyadic (interaction between a pair of individuals) ties between these actors.

Standard operating procedure (SOP) Detailed written instructions intended to achieve uniformity of the performance of a specific function.
<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>A person, group, organization, member, or system that affects or can be affected by an organization's actions or by the results of that which they are said to have a stake in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard deviation</td>
<td>How much variation or dispersion exists from the average (mean) or expected value.</td>
</tr>
<tr>
<td>Stigma</td>
<td>The extreme disapproval of (or discontent with) a person on socially characteristic grounds that are perceived, and serve to distinguish them, from other members of a society. A distinguishing mark of social disgrace.</td>
</tr>
<tr>
<td>Stratified sampling</td>
<td>A probability sampling technique in which the researcher divides the entire target population into different subgroups, or strata, and then randomly selects the final subjects proportionally from the different strata. This is used to highlight specific subgroups within the population.</td>
</tr>
<tr>
<td>Summative evaluation</td>
<td>Refers to the assessment of the learning and summarizes the development of learners at a particular time. Looks at the impact of an intervention on the target group.</td>
</tr>
<tr>
<td>Survey</td>
<td>A method for collecting quantitative information about items in a population.</td>
</tr>
<tr>
<td>Sustainability</td>
<td>Sustainability creates and maintains the conditions under which project and programs can exist in harmony and that permit fulfilling the social, economic, and other requirements of present and future generations.</td>
</tr>
<tr>
<td>Target population</td>
<td>The entire group of individuals or objects to which researchers are interested in generalizing the conclusions.</td>
</tr>
<tr>
<td>Terms of reference</td>
<td>The purpose and structure of a project, committee, meeting, negotiation, or any similar collection of people who have agreed to work together to accomplish a shared goal.</td>
</tr>
<tr>
<td>Theoretical framework</td>
<td>This collection of interrelated concepts that guides research, determining what will be measured and what statistical relationships will be looked for.</td>
</tr>
<tr>
<td>Time Series Design</td>
<td>A quasi-experimental design that is a standard method of causal analysis in evaluating the impacts of interventions, health programs, and state/national policies, i.e., it focuses on processes and behavior during treatment.</td>
</tr>
<tr>
<td>Timeliness</td>
<td>Occurring at a suitable or opportune time; with a desired frequency.</td>
</tr>
<tr>
<td>Transferability</td>
<td>One of the standards and quality in qualitative inquiry that refers to the degree to which the results of qualitative research can be generalized or transferred to other contexts or settings.</td>
</tr>
<tr>
<td>Transparency</td>
<td>Implies openness, communication, and accountability.</td>
</tr>
</tbody>
</table>
Treatment Delay A long time interval between the date that a TB diagnosis was given to a patient and when TB medicines were dispensed to the patient (treatment start), e.g., in excess of one day.

Treatment literacy Subcomponents of broader treatment education as defined by UNESCO and WHO that means people, both individually and in communities, understand what HIV drugs are, why they are needed, and what they can and cannot do. Treatment literacy translates medical information about ART into languages and formats that are accessible for everyone.

Trialibility The ability to test the intervention on a small scale in an organization, and to be able to reverse course (undo implementation) if warranted.

Triangulate Refers to a process of contrasting diverse sources of information and different data to identify divergent perspectives, validate key information, explore disparities, and yield a richer, more nuanced analysis of a situation.

Truncation The term for limiting the number of digits to the right of the decimal point by discarding the least significant ones.

Two-tailed test A statistical test used in inference in which a given statistical hypothesis, H_0 (the null hypothesis), will be rejected when the value of the test statistic is either sufficiently small or sufficiently large.

Type 1 error This occurs when the H_0 is true, but is rejected. It is asserting something that is absent, a false hit.

Type 2 error This occurs when the null hypothesis is false, but erroneously fails to be rejected. It is failing to assert what is present, a miss.

Under-reporting A type of reporting bias that reports unexpected or undesirable results as being less than is actually the case.

Validation rule A criterion used in the process of data validation that is executed after the data has been encoded onto an input medium. Inv

Value-added The amount by which the value of goods or services are increased by each stage in its production.

Vital Registration system A registration of births and deaths and the cause of death.